Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://evnuir.vnu.edu.ua/handle/123456789/23654
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorYunchyk, Valentina-
dc.contributor.authorFedoniuk, Yurii-
dc.date.accessioned2024-02-15T08:51:19Z-
dc.date.available2024-02-15T08:51:19Z-
dc.date.issued2023-06-30-
dc.identifier.citationYunchyk V. Fedoniuk Y. Results of developing the recommendation system for electronic educational resource selection. Manažérska informatika: vedecký časopis o informatike, Univerzita Komenského v Bratislave, Slovakia. vol.1. 2023, no 1. ISSN: 2728-8310. URL: https://manazerskainformatika.sk/results-of-developing-the-recommendation-system-for-electronic-educational-resource-selection/.uk_UK
dc.identifier.urihttps://evnuir.vnu.edu.ua/handle/123456789/23654-
dc.description.abstractThis paper proposes developing a recommendation system based on fuzzy logic methods for expert evaluation of electronic educational resources (EERs) and decision-making regarding selecting the most effective resources for educational processes. The concepts of recommendation systems for selecting optimal EERs are examined and analyzed. Scientific publications on expert evaluation and recommendation system utilization are reviewed. The overall structure of the recommendation system is presented, along with descriptions of its subsystems. Fuzzy logic methodologies are used for the assessment of EERs, with a welldefined procedural framework and explicit algorithmic representation. Expert analysis results in a compilation of recommended EER alternatives that align with specified criteria. The EER selection recommendation system is further elucidated through the generation of UML diagrams delineating use cases, sequences, and activities. The initial phases of user engagement with the recommendation system are described in depth, facilitating the selection of electronic learning resources. The recommendation system is introduced with a three-tier architecture consisting of presentation, application, and data administration layers. EER collection, expert criterion-based evaluation input, recommendation rating computation, recommended resource list formation, data visualization, authorization implementation, access provisioning, and creation of the administrator interface are the main technological elements that are described in detail. For each of these elements, implementation strategies and tools are explained. Programming code for the development of each of the key recommendation system stages is provided. The most significant elements of the web application interface are demonstrated, including the recommendation system's criterion selection page, administrator panel, category modification and addition panel, and the recommendation system's output.uk_UK
dc.language.isoenuk_UK
dc.relation.urihttps://manazerskainformatika.sk/results-of-developing-the-recommendation-system-for-electronic-educational-resource-selection/uk_UK
dc.subjectrecommendation systemuk_UK
dc.subjectelectronic educational resourcesuk_UK
dc.subjectfuzzy logicuk_UK
dc.subjectexpert evaluationuk_UK
dc.subjectUML diagramsuk_UK
dc.subjectrecommendation system architectureuk_UK
dc.titleResults of developing the recommendation system for electronic educational resource selectionuk_UK
dc.typeArticleuk_UK
dc.citation.journalTitleManažérska informatika: vedecký časopis o informatike-
dc.contributor.affiliationLesya Ukrainka Volyn National Universityuk_UK
dc.coverage.countrySKuk_UK
dc.format.pages28-
dc.relation.referencesenPasichnyk, V. et al. Using fuzzy logic in the process of expert evaluation of learning resources. Scientific Bulletin of UNFU, vol. 32(4), 2022, pp. 66-76. https://doi.org/10.36930/40320411uk_UK
dc.relation.referencesenEsteban, A. et al. Helping university students choose elective courses by using a hybrid multi-criteria recommendation system with genetic optimization. Knowl.-Based Syst., vol. 194, p. 105385, Apr. 2020, doi: 10.1016/j.knosys.2019.105385uk_UK
dc.relation.referencesenCañas, A. et al. A Recommender System for Non-traditional Educational Resources: A Semantic Approach. J. Univers. Comput. Sci., vol. 21, no. 2, pp. 306–325, 2015uk_UK
dc.relation.referencesenKo, H. et al. A Survey of Recommendation Systems: Recommendation Models, Techniques, and Application Fields. Electronics, vol. 11, no. 1, p. 141, Jan. 2022, doi: 10.3390/electronics11010141uk_UK
dc.relation.referencesenOjokoh, B. et al. A fuzzy logic-based personalized recommender system. Int. J. Comput. Sci. Inf. Technol. Secure., vol. 2, no. 5, pp. 1008–1015, 2012uk_UK
dc.relation.referencesenArtemenko, O. et al. E-tourism recommender systems: a survey and development perspectives. Econtechmod, vol. 6, no. 2, pp. 91–95, 2017uk_UK
dc.relation.referencesenWang, F. Personalized Recommendation System of College Students’ Employment Education Resources Based on Cloud Platform. in e-Learning, eEducation, and Online Training, W. Fu and G. Sun, Eds., in Lecture Notes of the Institute for Computer Sciences, Social Informatics, and Telecommunications Engineering, vol. 454. Cham: Springer Nature Switzerland, 2022, pp. 318–333. doi: 10.1007/978-3-031-21164-5_25uk_UK
dc.relation.referencesenLin, J. et al. Intelligent Recommendation System for Course Selection in Smart Education. Procedia Comput. Sci., vol. 129, pp. 449–453, 2018, doi: 10.1016/j.procs.2018.03.023uk_UK
dc.relation.referencesenShu, J. et al. A content-based recommendation algorithm for learning resources. Multimedia. Syst., vol. 24, no. 2, pp. 163–173, Mar. 2018, doi: 10.1007/s00530-017-0539-8uk_UK
dc.relation.referencesenXu Z. et al. Study on Personalized Recommendation Algorithm of Online Educational Resources Based on Knowledge Association. Comput. Intell. Neurosci., vol. 2022, pp. 1–9, Sep. 2022, doi: 10.1155/2022/2192459uk_UK
dc.relation.referencesenSlimani, H. et al. Semantic recommendation system of digital educational resources. in Proceedings of the 12th International Conference on Intelligent Systems: Theories and Applications, Rabat Morocco: ACM, Oct. 2018, pp. 1–6. doi: 10.1145/3289402.3289513.uk_UK
dc.relation.referencesenKotsyuba, I. et al. Recommendation web service for choosing an individual educational path in the field of transportation systems. programming Transp. Res. Procedia, vol. 63, pp. 591–599, 2022, doi: 10.1016/j.trpro.2022.06.052uk_UK
dc.relation.referencesenMorales, A. et al. Recommendation system with graph-oriented databases for a repository of open educational resources. IOP Conf. Ser. Mater. Sci. Eng., vol. 1154, no. 1, p. 012021, Jun. 2021, doi: 10.1088/1757-899X/1154/1/012021uk_UK
dc.relation.referencesenDwivedi, P. et al. e-Learning recommender system for a group of learners based on the unified learner profile approach. Expert Syst., vol. 32, no. 2, pp. 264–276, Apr. 2015, doi: 10.1111/exsy.12061uk_UK
dc.relation.referencesenTarus, J. K. et al. Knowledge-based recommendation: a review of ontologybased recommender systems for e-learning. Artif. Intell. Rev., vol. 50, no. 1, pp. 21–48, Jun. 2018, doi: 10.1007/s10462-017-9539-5uk_UK
dc.relation.referencesenPasichnyk, V. et al. Selection of electronic educational resources using a recommendation system. in Theses of the reports of the 12th International Scientific and Practical Conference 'Mathematics. Information Technologies. Education in Information Technologies, vol. XII. Lutsk-Svitiaz: Lesya Ukrainka Volyn National University, Jun. 2023, pp. 129–131uk_UK
dc.relation.referencesenPasichnyk, V. et al. Model of the Recommender System for the Selection of Electronic Learning Resources. CEUR Workshop Proc. 5 Rd Int. Workshop Mod. Mach. Learn. Technol. Data Sci., no. 3426, pp. 344–355, 2023uk_UK
dc.relation.referencesenYunchyk, V. et al. Application of the hierarchy analysis method for the choice of the computer mathematics system for the IT-sphere specialist's preparation. J. Phys. Conf. Ser., vol. 1840, no. 1, p. 012065, Mar. 2021, doi: 10.1088/1742-6596/1840/1/012065uk_UK
dc.relation.referencesenPasichnyk, V. et al. Comparative characteristics of the functionality of the system of computer mathematics in the process of task solving. Journal of Lviv Polytechnic National University "Information Systems and Networks", no. 11, pp. 87–102, Jun. 2022, doi: 10.23939/sisn2022.11.087uk_UK
dc.relation.referencesenLiu, Y. Personalized Recommendation Service of Educational Media Resources Based on Multi-dimensional Feature Fusion, Int. J. Emerg. Technol. Learn., vol. 18, no. 07, pp. 131–146, Apr. 2023, doi: 10.3991/ijet.v18i07.39233uk_UK
dc.relation.referencesenThongchotchat, V. et al. Educational Recommendation System Utilizing Learning Styles: A Systematic Literature Review. IEEE Access, vol. 11, pp. 8988– 8999, 2023, doi: 10.1109/ACCESS.2023.3238417uk_UK
dc.relation.referencesenFelfernig, A. et al. Constraint-Based Recommender Systems. in Recommender Systems Handbook, F. Ricci, L. Rokach, and B. Shapira, Eds., Boston, MA: Springer US, 2015, pp. 161–190. doi: 10.1007/978-1-4899-7637-6_5uk_UK
dc.relation.referencesenJain, R. A true multimedia client. IEEE MultiMedia, vol. 12, no. 2, p. 104, Apr. 2005, doi: 10.1109/MMUL.2005.20uk_UK
dc.relation.referencesenHazar, M. J. et al. A Recommendation System Involving a Hybrid Approach of Student Review and Rating for an Educational Video. In Review, preprint, Feb. 2023. doi: 10.21203/rs.3.rs-2375194/v1uk_UK
Розташовується у зібраннях:Наукові роботи (FITM)

Файли цього матеріалу:
Файл Опис РозмірФормат 
6.pdf813,74 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.