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A consistent microscopic derivation of the two-fluid hydrodynam-
ics for superfluid helium-4 in the ideal approximation is repre-
sented. The starting point in our formalism is a system of Heisen-
berg’s equation of motion for both normal and anomalous correla-
tion functions. The use of a mixed Wigner representation allows
us to perform the expansion of the equations of motion for cor-
relation functions in gradients directly, very easily, and with a
rigorous mathematics. To find the hydrodynamic flows, we have
constructed a local equilibrium statistical operator for superfluid
helium in the reference frame, where the condensate is at rest.

1. Introduction

Superfluid *He is a quantum degenerate system with
spontaneously broken symmetry. Its feature is the
macroscopic occupation of the lowest-energy single-
particle quantum state in the momentum space or, in
other words, is the presence of a condensate. As a re-
sult, the state of statistical equilibrium of the system
with spontaneously broken symmetry depends on eight
quantities: the particle density p, energy density ¢, mo-
mentum density j, and superfluid velocity vs. The pres-
ence of an additional velocity field leads to that the hy-
drodynamics of such a system is two-fluid.

The two-fluid hydrodynamic equations for superfluid
“He in the phenomenological consideration were con-
structed by Landau in 1941 [1]. A semiphenomenolog-
ical approach to the derivation of the two-fluid model
in terms of the Boltzmann kinetic equation for elemen-
tary excitations was suggested in [2]. These equations
were derived at the microscopic level by Bogolyubov in
1963 [3].

A starting point in the Bogolyubov’s paper is the sys-
tem of equations of motion for local quantities (particle
density, momentum density, and energy density) which
easy follows from the Heisenberg equations for both cre-
ation and annihilation operators, as well as the equation
for the anomalous average (1) which yields the hydro-
dynamic equation for the superfluid velocity.

To pass from the formal equations of motion to hydro-
dynamic equations, Bogolyubov considered the stage of
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evolution when the system tends to equilibrium. Then it
is possible to assume the establishment of a local equilib-
rium in the system. This is described by the statistical
operator with parameters that depend on space coordi-
nates. While approaching the thermodynamic equilib-
rium, these parameters are slowly changed in space and
time. Therefore, their gradients are small. The pro-
cedure of expansion in the gradients is formulated by
introducing the so-called “parameter of homogeneity” in
the equations of motion. Then the expansion in the gra-
dients coincides with the expansion in this parameter.
We note that the introduction of the parameter of ho-
mogeneity was carried out in the Bogolyubov’s paper in
a formal way.

When the conservation relations for the local hydro-
dynamic quantities are constructed, the next step is the
calculation of a hydrodynamic flows. Bogolyubov calcu-
lated the momentum flow by using a very elegant “scale
transformation” method. But the flow of energy was
obtained inconsistently. A more acceptable method of
calculation of the energy flow with the use of an explicit
local equilibrium statistical operator was proposed by
Morozov [4].

Our paper imitates the Bogolyubov’s article [3], but
we work with the equations of motion for the correlation
functions which are written in a mixed Wigner represen-
tation. The use of this representation allows us to make
expansion of the exact equation of motion for correla-
tion functions in the gradients without introduction of
the Bogolyubov’s “parameter of homogeneity”. In other
words, it allows us to realize the expansion in the gra-
dients directly, easily, and with a rigorous mathemat-
ics.

To calculate hydrodynamic flows, we use an explicit
form for the local equilibrium statistical operator. But,
in contrast to Morozov’s work which operates with the
statistical operator of superfluid helium at the labora-
tory reference system, we construct it in the reference
system, in which the condensate is motionless. This
gives the essential simplification, because the superfluid
component is stopped in the local frame of reference
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moving with v, and the total current is carried by the
normal component.

We conditionally separate the derivation of the two-
fluid hydrodynamics into two stages. On the first one,
by using the Heisenberg equation of motion for both nor-
mal and anomalous correlation functions, we derive the
conservation relations for the densities of particles p, mo-
mentum j, and energy ¢, as well as the equation of mo-
tion for the superfluid velocity vs. On the second stage,
we express hydrodynamic flows in the conservation rela-
tions in terms of the already introduced variables (p, j,
and ).

2. Conservation Relations for Hydrodynamic
Quantities

2.1. Equation of motion for correlation
Sunctions in the Wigner representation

Helium-4 is a typical Bose system with pair interaction.
Its Hamiltonian in the second quantization representa-
tion has the following form (we set A = 1 throughout
this paper):

# = [ @) (~58) v+ 1)

+%/drdr'¢’(r — ')t (e)yT (2 (x)y(r).

Here, 1" (r) and 9(r) are the creation and annihilation
operators, respectively, and ®(r —r’) = ®(|r —r'|) is the
interaction potential.

To construct the hydrodynamics of systems with spon-
taneously broken symmetry, we should proceed from the
extended system of correlation functions [6] which in-
cludes both normal and anomalous correlation functions.
Therefore, we will start with a system of correlation func-
tions in the form

<¢+(r1,t)¢(r2,t)>, (Y(r1,t)(ra,t)). (2)

Here, the angular brackets indicate the average over the
locally equilibrium ensemble, and the dependence of the
creation and annihilation operators on the time is given
through the Heisenberg representation, for instance,

Y(r,t) = e (r)e i1,

We note that the average in (2) is treated as a quasi-
average [5]. For the sake of simplicity, we will not take
the “v—term” that breaks the symmetry of Hamiltonian
(1) into account.
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Another note concerns the anomalous correlation
function. In article [3], Bogolyubov operated with the
wave function of the condensate (¥ (r,t)). In contrast
to Bogolyubov, we work with a pair anomalous aver-
age. The presence of the nonvanishing pair anomalous
average (1)) is ensured by the violation of the particle
number selection rule. Using the pair anomalous average
allows us to introduce a mixed Wigner representation by
analogy with the microscopic approach for the derivation
of the two-fluid hydrodynamics for superconductors [7].

Using the Heisenberg’s equation of motion

Op(r,t) _ _
lT - [I/J(rat)aH]— -

— oA + [ B - xS U ()

we obtain the equations of motion for correlation func-

tions (2).
These equations are as follows:
.0 1
7’& <'(/J+(I'1, t)¢(r2a t)>: % (Al - A2) <'(/J+(I‘1, t)’l/)(l‘2, t)>_

—/dr' {®(r1 —1') — ®(ry — ')} x
X<¢+ (rlat)¢+ (I‘I,t)'(/l(l",t)’l/)(I'Q,t», (3)

9 (s, 9 e2, )=

i (A1+A2) (Y(ry, t)p(rs, )+

1
" 2m
+/dr' {®(r1 — ') + B(ry — ')} x

< (T (', ) (r, ) (e, t)(ra, t)) +

+@(r1 — 1) (P(r1, £)¢(r2, 1)) (4)

The next step will be a separation of gauge-
noninvariant multipliers (in fact, we will use a reference
system, in which the condensate is motionless). Such a
separation of the phase has the form

’l/)(I', t) i '(/;(I‘, t) = '(/)(r, t)eimx(r,t).

The separation of the phase transforms the correlation
functions in the following way:

<¢+(r1, t)ih(ry, t)) = eim(x(rz.t)—x(rl,t))G(rl, ra;t),
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(01, (s, 1)) = OO Py pi)
(W (r1, )T (¢, )P(x', £) b (x2, 1)) = X2 =x(e1,0))
xD®) (ri,r2,1';t),

(W (@', )Y (r, ) (ry, 1)Y(ra, t)) = emXF2D+x(rnt))

xD(3) (ry,r2,1'5t).

The functions G, F, DM, and D) in the statistical equi-
librium state are spatially homogeneous. In the nonequi-
librium states, they are changed less than the spatially
inhomogeneous functions.

Then the equations of motion for G and F' are as fol-
lows:

0
{ig +mie1,0) = mi(e2,0) | G mait) =

= —% [(Br-mvs(r1,t))? — (P2 +mvs(rs,1))?]G(ry, a5 t)—

- /dr’ {®(r; —1') — ®(ry — ')} DY (ry,ra,1'58), (5)
{Z% - mX(rlat) - mX(rZat)} F(rlarZ;t) =
:% [(f’l"‘mvs(rlat))2+(f)2+mvs(r2at))2]F(r1ar2;t)+

—l—/dr' {®(ry — ') + ®(rs — ')} D@ (ry,ra,r'; 1)+

+@(r1 —r2)F(r1,r25), (6)
where vy = Vyx is the superfluid velocity (velocity of
the condensate). Note that x is the phase of a one-
particle condensate. Recently (see article [8] and ref-
erences therein), the presence of a pair (and higher)
condensate in superfluid helium-4 was proved theoret-
ically. If we take the higher condensates into account,
we must assume the velocities of all condensates to be
the same. In the theory of superconductivity, the typical
anomalous average is (¢, 1+), but the superfluid velocity
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is defined as a gradient of the phase x of the i-operator
[6,7,9].

The transition to the equations of hydrodynamics is
performed with the use of the expansion of Egs. (5) and
(6) in space gradients. This expansion can be simply
realized by using the so-called mixed Wigner represen-
tation [6]. For this purpose, we introduce new variables

1
R= 5(1'1 +r2), r=ro—r].

After the Fourier transformation with respect to the
relative coordinate r, we obtain

f(ri,re,t) = f(R,r,t) = / (;lTpr(R,p,t)eipr,

and

!
rr >R — —Vp,

i
2 r2—>R+§Vp,

. 1 . i
P1—=P-5VR, P2 P~ 5Vr (7)
Any function of R +4/2 - V, can be understood in terms
of its power-series expansion

i 9f(R)

?

(8)
Using procedures (7) and (8), the equations for correla-
tion functions can be written as

0Gp(R,t) . 8Gp(R,t)  (pi _ \ 0Gp(R,1)
7& —mvsziapi +( —l—vsz) 761%@-

0Gp(R,t
p(R.1)

0 ((Pi+mvsi)2>
9p;

6Rj 2m

9)

' (1) I
_+_i 1 /drl 8<I>(r )’l"" aDP (Ra r; t) .
aR]’ 2 (97‘; J Bpi

(12 -2mi) Falo0)= (2 2+ 6(6) ) (R0

. 8vsi an(R, t)

+2 / dr'd(r')DP (R, r';t)+

*Pi BR] Bpj
Fo(R,t
+ivsi%+2%/dr’@(r’)r}Dl(f)(R,r’;t). (10)
) J
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Here

Gol®yt) = [dr(w (R-J.09(R + 3,0)e™, (11
Fo(Ryt) = [ dr((R - 3 09(R + 3,0)e™, (12
(', Y (R+-3,1))e™, (13)

by = Ovs; (R, t) ‘= Ox(R,t)

ot ot
and &(p) is the Fourier transform of the interaction po-
tential.

In Egs. (9) and (10), the second-order terms with re-
spect to the space gradient (the terms proportional to
V%) were neglected, which corresponds to the approxi-
mation of the ideal hydrodynamics.

We call Eq. (9) the forming equation, because its use
gives the conservation laws for hydrodynamic quantities.
Moreover, in terms of (9), we will obtain the equation of
motion for the superfluid velocity.

Let us pass to obtaining the differential conservation
laws (balance equations).

2.2. Equation of motion for the superfluid
velocity

Let us consider the zero order of the equation for the
anomalous correlation function (10). This equation
reads

(a0 + ) by =

- <§_m - @) Fp(R,t) — / dr'®(r') DY) (R, x'; 1).

The separation of variables gives

mx(R,t) =

N mvi(R,t)
2

(;’_m ’ %é(p)> (R, t)+/dr"1>(r’)D,‘3> (R,r';t)
F>(R,t)

= —u(R, ).
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Hence,

mx(R,t) + %mv?(R, t) +u(R,t)=0 (14)

and
2 &
(i—w%) Fo(R, 1) [ar'2()D (R, ') = 0.

Here, p is the order of separation of the variables that
coincide with the chemical potential.

Applying the operation Vg to Eq. (14), we obtain the
equation of motion for the superfluid velocity:

ov,
"ot

mv?

—0.
2 +”>

This first hydrodynamic equation shows that the su-
perfluid is accelerated freely under applied fields. The
remaining hydrodynamic equations are provided by the
conservation relations for the particle density p(R,t),
momentum density j(R,t), and energy density £(R,t).
These equations follow simply from the calculation by
moments of the forming equation (9).

+ Vg ( (15)

2.3. Equation for the particle density
By definition,

d
R ) = m(y* (R 0(R,0) = m [ B Gp(Rt).
After integrating (9) over p, we find
p o
a5t +divj =0, (16)
where
. dp .
jR,t) = /WPGP(R’ t) + pvs = jo + pVs- (17)

Equation (16) is the equation of continuity for the par-
ticle density. The quantity j(R,t) is the momentum den-
sity, respectively, and jo is the momentum density in a
reference system, where the condensate is motionless.
The calculation of jg in explicit form will be performed
in Section 3.

2.4. Equation for the momentum density

Using definition (17), we find that

Ojr 0 . _
Bt &(]Ok + pusk) =
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. dp 0Gp (R, t) Ovsy,
_/(271')3 (pk +mvsk) ot +p ot

Taking the moment of the forming equation (9) with
respect to p +mv, and using the equation of motion for
the superfluid velocity (15), we obtain

Qjs Oy
Bt ' BR,

= 0. (18)

The momentum density flow (stress tensor) is given
by

/ (D1 + msk) (b5 + M) Gp (R, £) —

,8@( ) 4 dp 1
2/d o /(%) DY (R,r';t) =

= Vs Joj + Vsjjok + PUskVs; + Lok, (19)
where
1 dp
opi = — | -2 pp:Go(R, £)—
Okj m/(27r)3pkp]Gp( 1)
1 0®(r") dp
2 a 4 DU (R,1';t). 2
2/ r 87'2: T]/(QW)3 P ( 7r’ ) ( 0)

2.5. Equation for the energy density
By definition, the energy density of particles in the lab-

oratory reference system is as follows:

E(r,1) = 5 (Vo (e, ) Ve, )

1
+3 / dr'®(|r

In the system of reference, where the condensate is
motionless, the energy density is

') (y" (r, )" (', )p(r, ) (x, 1))

dp

E(R,t) = 2m )ZGP(Rat)+
/dr<I>|R— /( S DY (')
E=E +jovs + 1pvg, (21)

2
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where

d
Eo=r [ 2op?

1 ' - dp (1) ’.
+2/dr<1>(|R r|)/(2ﬂ_)3 W(R,r'; ).

By analogy to the previous subsections, we find
o0&
n +divQ = 0.

The energy flow is given by

Gp(R, 1)+

. 1 1
Q= (50+J0Vs+§PU§> Vet 2USJ0+H0Vs + Qo,

where

1 dp ,
Qok = 5~ / @n? peGp(R, 1)+

+—/d '®(r / )3ka( J(R,r';t)—

1 02(r) dp (1)
__m/dr o’ rk/(z )3p]D (R,r';t).

The system of equations (15), (16), (18), and (23) is
a complete system of balance equations for superfluid
helium-4.

3. Calculation of Hydrodynamic Flows

In the previous section, we have obtained a system of
balance equations. These equations are nonclosed, be-
cause flows (17), (20), and (25) are unknown. When we
have an explicit expression for the G-function, then the
determination of the hydrodynamic flows is realized by
calculation of the momentum integrals. In the case of
superfluid helium, finding the G-function is impossible.
Therefore, we must develop some “indirect” method to
find flows (17), (20), and (25).

In finding the hydrodynamic flows, we used an explicit
expression for the local equilibrium statistical operator.
In contrast to work [4], we constructed the statistical
operator in the reference system, where the condensate
is motionless, which leads to some simplification.

The local equilibrium statistical operator that de-
scribes superfluid helium in the reference system, where
the condensate is motionless, is as follows:

@zexp{/drﬂ(r)

Q(r) — Ho (r) —uPo (r) — % ﬁ(r)]} . (26)
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In the local frame of reference moving with v, the
superfluid component is stopped, and the total current
is carried by the normal component.

Therefore,

- oN

Jo=(Po) = =5~ = pau. (27)

Here, p,, is the normal fluid density.
Substituting (27) in (17), we find the momentum den-
sity (mass flow)

J=Jo+pvs =pu(Vh — V) + pvs =

= Vi + (P — Pn)Vs = PV + psVs, (28)

where p; = p — p, is the superfluid density.
To find the stress tensor, we use a very elegant “scale
transformation” method introduced by Bogolyubov [3].
Let us consider the transformation
7','—)>\7',', Ty — Tk (k;él)

The mean energy is thus transformed by the rule

() = (o) = - [ GEpAGH R+

1 d
+§/dr'<1>>\(R—r')/ (2;3D£,1)(R,r';t),
where

1
pi = pr + sza q:')\(r) = <I)(>‘7'ia7'k)'
ki

It is easy to show that

5<ffo A) ‘
o Ix=1

= —Iloy;.
Using the relationship

O(Hor) 00

where Q, =Q (ﬂ, g,kui,uk) )

X X’
we find
a0 0 9 ,
Hois = ——+1~ =—|—Pz- tu = P+ pnu;
0 B ey ( pap+“a,> Pt

oN
Here, P = p— is the pressure.

op
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Since the selected direction in the system of reference,
where the condensate is motionless, is u, we have
HOik = PnU;Ug + 6ikP- (29)

Substituting (29) in (19), we find the final form of the
stress tensor (momentum flow):

I, = Mok + vsiJor + VskJjoi + PUsiVsk =

= PsVs;Usk + PnUniUnk + 5sz (30)

To calculate the energy flow, we employ the obvious
identity [4]
([Ho,58]-) =0, (31)
where S is the entropy operator that is defined by the
relation ¢ = exp{—S}.

Using the explicit form of the local equilibrium statis-
tical operator (26), identity (31) gives

| @) (o, Ho(e))- = uil o, Pos(o)] - -

~L 8, p)]-) = 0.

Inserting the Heisenberg equations of motion for
Hy(r), Py;, and p(r), we obtain

/drﬁ(r) {leOZ - ukvl']._.[o ik — %vl]()l} = 0

Due to the arbitrariness of the integration domain, we
have

1
ViQo: = urV;llp s + ﬁvijoi + —=Vig;.
m B

Substituting (27) and (29), we find

g = Su,

Qo = (pnu2 + 22y TS) u. (32)

m
Finally, the expressions for hydrodynamic flows have
the form

J = pPsVs + PnVn, Vp =u-+ Vs,

it = PnVniVnk + PsVsiVsk + dir P,
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Q= ﬁ—kﬁ i+ TSvp + prvn (Vi - (Vo — Vs))
- 2 m .] n pn n n n s .

These hydrodynamic flows coincide with those in the
two-fluid hydrodynamics of Landau [1].
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MOIU®IKOBAHE BOI'OJIIOBOBCHKE BUBE/EHHS
JIBOPIAUHHOI I'IPOJUHAMIKI

II.1I1. IIuzopin, A.B. Ceid3uncvrul
PezmowMme

Y pobori npeacTaBIeHO IIOCIISOBHUI MIKPOCKOIIIYHUI BHBIZ ABO-
piAuHHOI riZIpOAMHAMIKY HAAIJIMHHOIO rejiio-4 B ieajlbHOMY Ha-
6amkenHi. BinnpaBHO0 TOYKOI0 y HamoMmy dhopMai3Mi € cucrema
rafizeH6epriBCbKUX PiBHAHB PyXy st HOPMAJIBHOI T aHOMAJIBHOL
KopenanifiHux GpyHKIi#. BUKOpHCTaHHA MINIaHOTO MIPEICTaBIECHHA
Biruepa [03B0JIsi€ JIETKO i 3 MaTEMATHYHOK CTPOTICTI0O BUKOHATH
PO3KJIaJ PiBHSHBb PyXy [Jis KOpensifiuux (PyHKIiH 3a rpajieHTra-
Mu. JIng obuucneHHa rifpoAuHAMIYHUX MOTOKIB y poboTi mobymo-
BAHO JIOKAJIbHO-DIBHOBA’KHHI CTATHCTHYHHI OIEPATOD HAILIMH-
HOI PiIMHY B CHUCTeMi BiJIiKy, IIOB’sA3aHiil 3 KOHIEHCATOM.
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