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Abstract—We investigate a switched system given by a set of 
linear systems. We offer tools of qualitative system analysis 
using multiple Lyapunov function method and obtain an 
estimation of system solution at final time moment depending of 
initial state. The estimation is obtained by composing of 
perturbations of separate subsystems on each time interval of 
switched system. 

I. INTRODUCTION 

owadays many complex processes in real technical 
systems have changeable dynamics and very often lead 
to the study of hybrid and switched dynamical systems. 

They are of a major research interest due to their use as 
models in many applications in computer science and 
systems control. These systems have dynamics with several 
modes and their transitions from one mode to other occurs if 
solution reaches definite conditions. Such systems combine 
both the complex dynamics described by linear or nonlinear 
differential equations, and logical switches which cause 
transitions of technical systems for a various modes of 
operation [1],[3],[9],[18],[25]. They consist of a continuous-
time and a discrete-time process, which interact with the 
logical law or decision-making process. Continuous and 
discrete subsystems can be represented by systems of 
differential and difference equations, respectively, where the 
logical laws or decision-making processes are expressed by a 
finite automaton or a discrete system. Switched systems are 
described by set of linear differential equations with logical 
elements of time-switch type. A time-switched controller can 
be used in a continuous system to achieve better performance 
benefits [17],[19]. These systems have numerous 
applications in control of mechanical systems, automotive 
industry, flight and air traffic control, switching power 
converters, process control, intelligent vehicle highway 
systems, robotics, etc. Examples include automation systems, 
repetitive, computer disks drives, automation, machine 
control, high-level flexible manufacturing systems, 
intelligent transportation systems, highway transport, 
maritime and air traffic control systems, control systems of 
modern spacecraft, electrical systems, chemical processes.  
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Many problems associated with the investigation of 
switched systems are related to automatic programmatic 
control [11] and stability [2],[7],[12],[21],[27],[24]. In [22] 
challenging problems for stability and control in the hybrid 
dynamic system framework are posed.  

 
One of the major problems in hybrid and switched 

dynamic systems is the establishing of their key property of 
stability, which is important in controller design. Stability 
may prove also critical for real-time systems, embedded 
systems, and hybrid systems in general that arise in computer 
science problems where verification tests are undecidable. 
Relaxing demands in the search for a stability proof may be 
necessary for a specific problem. For an overview of results 
on hybrid stability see [15], [8], [14], [20]. Some results 
assume arbitrary switching between locations, and it is 
possible to look for a Lyapunov function common to all 
locations [20]. Another stability criterion is multiple 
Lyapunov functions [3-5], [16] one, and piecewise quadratic 
Lyapunov function [10],[11]. Each location is assumed to 
have a Lyapunov function and in [9] the information about 
stability is given by available tools from non- smooth 
analysis to study the gradient information of the candidate 
Lyapunov functions. Paper [13] presents a novel model of a  
predictive control scheme that achieves input-to-state 
stabilization of hybrid systems. Input-to-state stability is 
guaranteed when an optimal solution of the optimization 
problem is attained. In [26] it is proved that the linear hybrid 
automata can be reduced to a linear discrete-time system 
with periodic coefficients. Moreover it is shown that the 
linear hybrid automata admit a periodic trajectory, and the 
theorem for asymptotic stability of the periodic trajectory is 
given. It is applied to prove the stability of the switched 
system.  

 
The main purpose of the paper is to find the estimation of 

solution of switched systems with a time-switch controller 
described by linear subsystems. Using the estimations for 
separate subsystems, which are obtained with the method of 
Lyapunov functions, and using the continuity condition of 
solution at the switching moments, we get the estimation of 
the origin switched system solution at the final moment 
depending on initial state. Using the Lyapunov function of 
quadratic form with matrix exponential the estimations of 
solution are obtained. We get the final estimation by 
composing perturbations for the separate subsystems. 
Moreover we consider the scalar case of such systems. 
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II. PRELIMINARIES 

A. Switched System in General Form. 

 
We consider a switched system given by a set of linear 

subsystems which evolve over finite time intervals, 

[ ]1,i i iT t t−= , 1,i N= . The moments of time 1 2, ,..., ,...,i Nt t t t  

are called switching moments. Such switched system can be 
written as a family of systems which are described by 

( ) ( ) ,ix t A x t=ɺ  1,i N= , 0t ≥                     (1) 

where ( ) nx t R∈ , iA  - constant matrices. 

For solutions 0( , )x x x t=  the continuity condition 

0 0
lim ( ) lim ( ), 1,i i
s s

x t s x t s i N
→+ →+

− = + =     (2) 

holds at switching moments. 
 

B. Switched System Given by Scalar Equations 

 
A particular case we consider the switched system 

functions over the time interval [ ]1,i i iT t t−= , 1,3i =  given 

by three linear scalar systems  

1

2

( ) ( ) ( )

( ) ( ),

i i

i

x t x t b y t

y t y t

λ

λ

= +

=

i

i
     (3) 

where ( ) nx t R∈ , 1 2, ,i i ibλ λ   - are constant numbers. 

For solution x(t) of  system (3) the continuity condition (2) 
holds at switching moments too. 

 

C. Statement of the problem 

 
The main goal of the paper is to find the estimation of the 

solution of switched systems in general form (1) and in 
scalar form (3) depending on the initial state. We calculate 

the estimations of solutions ( )Nx t  at the final 

moment Nt t= . The switched systems presented by set of 

subsystems which are linear differential equations with 
constant coefficients are considered. Each of the subsystems 
describes the evolution dynamic on the finite time 

interval, 1i it t t− ≤ <  1,i N= . Subsystems can be either stable 

or unstable.  
We assume, that initial state of switched system (1) and 

system (3) are satisfied to 
| (0) |x δ< . 

It means that all solutions of the system (0)x  are in δ –

neighborhood of equilibrium at the initial time 
moment 0t t= .  

On the separate time intervals the subsystem with matrices 

iA  are described by the systems of linear differential 

equations, having the continuous dependence of solutions on 

initial conditions. Therefore for arbitrary 0δ >  all solutions 
starting from δ –neighborhood will not leave ( )ε δ –

neighborhood. And contrary, for arbitrary 0ε >  there is  
( ) 0δ ε >  such that  | ( ) |Nx t ε<  if | (0) |x δ< . The paper is 

devoted to the problems of estimation of solutions on the 
finite time intervals, so the calculation of these values. As 
subsystems are linear, the Lyapunov functions of quadratic 
form are used. 

The main goal is to find the estimation of systems (1) and 
(3) depending of initial state. We compute the estimations of 

solutions ( )Nx t  at the final moment Nt t= .  

At first we obtain the estimations of solutions of separate 
subsystems using the method of Lyapunov functions. Next 
stage is following: taking into account the condition (2) of 
continuity between subsystems at the switching moments, we 
obtain the estimation at the final moment. We get the 
estimation by composition of perturbations for the separate 
subsystems. 

We use the following vector norm: 

( ) ( )2

1

N

i
i

x t x t
=

= ∑  

Paper was organizing as follows. At first we deal with 
particular subsystems and obtain the estimations. Next we 
collect all particular results and compute the final estimation 
of initial switched system. This investigation is made using 
two tools: quadratic multiple Lyapunov functions and 
coinciding multiple Lyapunov functions. 

 

III.  TOOLS OF QUADRATIC MULTIPLE LYAPUNOV 

FUNCTIONS 

A. Estimation of Solution of General Switched System. 

 
It is known that for the linear system with constant 

coefficients 
, 0( ) ( ), ( ) n tx t Ax t x t R ≥= ∈ɺ  

a general solution is 0 0( , ) Atx x t e x=  where matrix 

exponential has the form 
2

2

1! 2! !

k
At kt t t

e I A A A
k

= + + + + +⋯ ⋯  

And the solution of the system can be estimated with the 
use the Lyapunov function, which has a quadratic form [2] 

( ) ( )0 0( , )
TT At AtV x t x x e x e x− −= = , 

or  

( , ) ( ) , ( )
TT A t AtV x t x H t x H t e e− −= = . 

This form of Lyapunov function describes the evolution of 
process the most exactly. The space ( , )V x t α<  is a middle 

of ellipse which goes out from the neighborhood 0| |x α<  

but changes along the solutions 0( , )x x x t= . The multiple 
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Lyapunov functions of the switched system are shown on 
Figure 1. 

 
Theorem 1. Let the initial state of the switched system (1) 
satisfied the condition | (0) |x δ< . Then at Nt t=  inequality  

min
1

| ( 0) |

[ ( )]
N N

i i
i

x t

H t

δ

λ
=

− <

∏
,                (4) 

holds, where 1 1( ) ( )
0( ) , 1, , 0

T
i i i i i iA t t A t t

i iH t e e i N t− −− − − −= = = . 
Proof. We consider the first time interval of dynamic 
evolution of system (1): 

1 0 1 0( ) ( ), ( ) , , 0nx t A x t x t R t t t t= ∈ ≤ < =ɺ .      (5) 

We select the Lyapunov function in such form 
1 1

1 1( , ) ( ) , ( )
TA t A tTV x t x H t x H t e e− −= = . 

 
For the Lyapunov function the bilateral inequality  

2 2
min 1 1 max 1[ ( )] | ( ) | ( ( ), ) [ ( )] | ( ) |H t x t V x t t H t x tλ λ≤ ≤  

is hold.  
A complete derivative of function 1( , )V x t  for the subsystem 

(5) yields 

1 1

1 1

( ( ), ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 0

T

T T

d
V x t t x t H t x t

dt
d

x t H t x t x t H t x
dt

t

= +

+ + ≡

ɺ

ɺ

. 

Therefore, at arbitraryt : 10 t t≤ <  Lyapunov function along 

the trajectories is constant i.e. 

1 1 1( ( ), ) ( (0),0) const, 0V x t t V x t t≡ = ≤ < . 

Obtaining 

[ ]
[ ]

2

min 1 1 1 1 1 1

2 2

1 max 1

( 0) ( 0) ( ( 0), 0)

( (0),0) (0) (0) (0)

H t x t V x t t

V x H x x

λ

λ

− − ≤ − − =

= ≤ =
 

And for the first time interval we get inequality 

1 1

min 1 1

| (0) |
| ( 0) |

[ ( )]

x
x t

H tλ
− ≤ . 

We consider the second time interval, and the subsystem 

2 1 2( ) ( ), ( ) ,nx t A x t x t R t t t= ∈ ≤ <ɺ .          (6) 

The Lyapunov function on this time interval has a form 
2 1 2 1( ) ( )

2 2 2( , ) ( ) , ( )
TA t t A t tTV x t x H t x H t e e− − − −= = . 

The bilateral inequality  
 2 2

min 2 2 max 2[ ( )] | ( ) | ( ( ), ) [ ( )] | ( ) |H t x t V x t t H t x tλ λ≤ ≤ . 

is hold. 
The complete derivative of function 2( , )V x t  for subsystem 

(6)  is 

2 1 2( ( ), ) 0,
d

V x t t t t t
dt

≡ ≤ < , 

And 
 2 2 1 1 1 2( ( ), ) ( ( 0), 0) const,V x t t V x t t t t t≡ + + = ≤ < . 

From here 
2

min 2 2 2 2 2 2

2 1 1

2 2
max 2 1 1 1

[ ( 0)] | ( 0) | ( ( 0), 0)

( ( 0), 0)

[ ( 0)] | ( 0) | | ( 0) | .

H t x t V x t t

V x t t

H t x t x t

λ

λ

− − ≤ − − =
= + + ≤

≤ + + = +

 

And for the second time interval we get 

[ ]
1

2

min 2 2

( 0)
( 0)

( )

x t
x t

H tλ
+

− ≤ . 

So the continuity condition (2) takes place then we obtain 

2 2

min 2 2 min 1 1

| (0) |
| ( 0) |

[ ( )] [ ( )]

x
x t

H t H tλ λ
− ≤  

holds at the switched moment. 
Continuing the process farther, we get 

min
1

| (0) |
| ( 0) |

[ ( )]
N N N

i i
i

x
x t

H tλ
=

− ≤

∏
,               (7) 

concluding the proof of the Theorem 1.  
 

B. Obtaining the Estimation of Scalar Switched System 

 
Consider the linear scalar system 

1

2 1 2

( ) ( ) ( )

( ) ( ), .

x t x t by t

y t y t

λ

λ λ λ

= +

= ≠

i

i
 

The eigenvector  ( ) ( )1 1, 1,0α β =  corresponds to 

eigenvalue 1λ λ= , and eigenvalue ( ) ( )2 2 2 1, ,bα β λ λ= −  

corresponds to eigenvalue 2λ λ= . Therefore the fundamental 

matrix of solution is 

( )
1 2

2
2 1

( )
0

t t

t

e be
X t

e

λ λ

λλ λ
 

=  − 
 . 

So 

( )2 1

1
(0)

0

b
X

λ λ
 

=  − 
 , 

then 

Fig. 1.  Quadratic Multiple Lyapunov Functions 
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Ate = ( )
1 2

2

1

2 1

( ) (0)
0

t t

t

e be
X t X

e

λ λ

λλ λ
−  

= × − 

( )

1

2 1

1

0

b

λ λ

−
 

× = − 

( )1 2 1

2

2 1

0

t t t

t

b
e e e

e

λ λ λ

λ

λ λ
 − −
 
  

 . 

The matrix  ( )
TA t AtH t e e− −=  of Lyapunov function 

( , ) ( )TV x t x H t x=    has a form 

( ) 11 12

12 22

h h
H t

h h

 
=  
 

 

where coefficients 11 12 22h ,h ,h  which are depended of 1 2,λ λ  

and can be computed. 
And we obtain a Lyapunov function 

  2 2
11 12 22( , , ) ( ) 2 ( ) ( )V x y t h t x h t xy h t y= + +  ,        (8) 

The eigenvalues of matrix ( )H t  can be obtained from the 

characteristic equation 

[ ] 11 12

12 22

( ) ( )
det ( ) det 0

( ) ( )

h t h t
H t I

h t h t

λ
κ

λ
−

− = =
−

. 

We get 

[ ] [ ]{ }2 2
12 11 22 11 22 12

1
( ( )) ( ) ( ) ( ) ( ) 4 ( )

2
H t h t h t h t h t h tλ = + ± − + . 

 
Example 1. Consider the switched system on three time 
intervals: 0 1t≤ < ,  1 2t≤ <  and  2 3t≤ ≤ . We compute 

the estimation ( )3x t  at the time moment 3t = .  

The initial state of the solution of system (3) at 0t =  is 

equal 0δ : ( ) 00x δ= . 

1) Over the time interval  0 1t≤ <   the system coefficients 
are 1 1λ = − , 2 0λ = , 1b = . Therefore the system has a form 

( ) ( ) ( ),

( ) 0.

x t x t y t

y t

= − +

=

i

i

      (9) 

Lyapunov function (8) has a form: 
2 2 2 2( , , ) 2 (1 ) (1 ) 1t t t tV t x y e x e e xy e y = + − + − +  . 

The eigenvalues of matrix  ( )H t  at  1t t=   are 

1,2

2 2 2

( ( ))

1 1
(1 ) (1 ) (1 ) ((1 ) 1 ) 4

2 2
t t t t t

H t

e e e e e

λ =

 = − + − ± − − + + + 
, 

And compute [ ]max 1( )H tλ = 10,58, [ ]min 1( )H tλ =  0,54. 

The estimation of solution at 1t = : 

( )
[ ]

0 0
1 1

min 1
0,54( )

x t
H t

δ δδ
λ

= = =  .       (10) 

2) Over the time interval  1 2t≤ <  the system has a form: 

( ) ( ) ( )

( ) 2 ( ).

x t x t y t

y t y t

= − +

= −

i

i

      (11) 

Lyapunov function (8) yields: 
2 2 2 2 2 4 2( , , ) ( ) 2 ( ) (( ) )t t t t t t tV t x y e x e e e xy e e e y= + − + − +  . 

The estimation of solution at 2t = over the interval 
1 2t≤ < we get taking into account the initial state 1δ  which 

has been computed in  (10): 

( )
[ ] [ ]

0
2 2

min 1 min 2

0 0

( ) ( )

.
0,54 24,5 13,23

x t
H t H t

δδ
λ λ

δ δ

= = =

= =
⋅

. 

3) On the interval  2 3t≤ <   system has a form: 

( ) 2 ( ) ( )

( ) 2 ( ).

x t x t y t

y t y t

= − +

=

i

i

     (12) 

Lyapunov function: 

4 2 2 2 2

2 2 2 4 2

1
( , , ) ( ) ( )

2
1

( )
16

t t t t

t t t

V t x y e x e e e xy

e e e y

−

− −

= + − +

 + − + 
 

. 

The estimation of solution at 3t = : 

( )
[ ] [ ] [ ]

0
3

min 1 min 2 min 3

0 0

( ) ( ) ( )

.
0,54 24,5 0.05 0,6615

x t
H t H t H t

δ
λ λ λ

δ δ

= =

= =
⋅ ⋅

 

The multiple Lyapunov functions constructed for this 
switched system are given on Figure 1. One can see three 
Lyapunov functions constructed for three time intervals. The 

initial condition is assumed( ) 00 1x δ= = . The Lyapunov 

functions of each time interval are expanded or narrowed 
depending of each system stability. The estimations of 

solutions ( ) , 1,2,3ix t t =  are computed at each time 

moment.  
 

C. Tools of Coinciding Multiple Lyapunov functions 

 
Proving of the Theorem 1 at the time momentsit t= , 

1,i N=  we have too strong restriction. The first restriction is 

the requirement for the curve level to ( 1)i −  - Lyapunov 

function 1( , )iV x t−  on ( 1)i − -step, which have the ellipse 

form on the ending of ( )1i − -step. At the switching time 

moments this ellipse is inside of the curve level  of i -
Lyapunov function  ( , )iV x t  , which is a circle on the starting 

of  i  - step.  
In this case we impose a weaker condition, when the curve 

level of i - Lyapunov function on ( 1)i − - step is an ellipse 

which coincides with the ellipse of previous Lyapunov 
function at the moment of switching (see Figure 2).  

 



 

73 
 

 

Theorem 2.  Let the initial state of switched system (1) 
satisfies the condition | (0) |x δ< . Then at Nt t= the 

inequality  

min

| |
| ( 0) |

[ ( )]
N

N N

x t
H t

δ
λ

− < ,                  (13) 

holds where 

11

1
( )( )

0
1

( ) , 0
T

j j ji i i

N
A t tA t t

N N
i N j

H t e e t−− − −− −

= =

= =∏ ∏ . 

    The proof is made analogically to the previous 
Theorem, by keeping in mind that for the first time interval 

10 t t≤ <  Lyapunov function is 

1 1
1 1 1( , ) ( ) , ( )

TA t A tTV x t x H t x H t e e− −= = . 

 

 
or 

1 1 1 1
1( , ) ( ) ( )

TA t A t A t A tT TV x t e x e x x e e x− − − −= = , 

and for the second time interval we select the „deformed” 
Lyapunov function  

2 2 2 2
2 2 2 2 2( , ) ( ) ( )

TA t A t A t A tT T TV x t C e x C e x x e C C e x− − − −= = , 

where 2C  is a non-zero matrix with constant coefficients. A 

condition coinciding at the switched moment 1t t=  

determines the matrix 2C  is following 
1 1 2 1

2
A t A te C e− −= . 

From here we obtain 
1 1 2 1

2
A t A tC e e−= .                             (14) 

At the second interval 1 2t t t≤ <  the Lyapunov function  

2 2 1 1 1 1 1 2 1 2
2 2( , ) ( ) ( )

T T TA t A t A t A t A t A tT TV x t x e e e e e e x x H t x− − − −= = , 

where 
2 1 1 1 1 1 2 1( ) ( )

2( )
T TA t t A t A t A t tH t e e e e− − − − − −= . 

  
Example 2. We estimate the same switched system 
considered in Example 1 using the coinciding Lyapunov 

functions. Therefore we have ( ) 00x δ=  and three time 

intervals: 0 1t≤ < ,  1 2t≤ <  and  2 3t≤ ≤ . We compute 

the estimation ( )3x t  at the time moment 3t = .  

1) At the time interval  0 1t≤ <   the system has a form (9), 
and the estimation yields (10). 
2) At  1 2t≤ <   for the system (11)  “deformed” Lyapunov 
function is 

2 2 1 1 1 1 1 2 1 2
2 2( , ) ( ) ( )

T T TA t A t A t A t A t A tT TV x t x e e e e e e x x H t x− − − −= = , 

where     
2 2 1 1 1 1 1 2 1 2

2( ) ( )
T T TA t A t A t A t A t A tH t e e e e e e− − − −= . 

Compute: 

( )
2 1

1

1 2 2

0TA t
e

e
e e e

−

− − −

 
=  

−  

, 
( )

2 1

1 1 2

20

A t e e e
e

e

− − −

−

 −
=  
  

, 

( )
2

2

20

t t t
A t

t

e e e
e

e

−
 −

=  
  

, 

( )
2

2 2

0T

t

A t

t t t

e
e

e e e
−

 
=  

−  

,     
( )

1 1
1

0 1
A t e e

e−  −
=  
 

,   

( )
1 1

0

1 1

TA t e
e

e
−  

=  − 
. 

From here we obtain matrix 2( )H t  

( )2

2 2 3 1 3 2

2 3 1 3 2 2 4 4 4 2 3 1 4 3

, 2

2 , 2 4 4 4

t t t t

t t t t t t t t

H t

e e e e

e e e e e e e e

− −

− − − − − −

=

 − +
=  − + + + − − 

. 
Lyapunov function: 

( )
( )

2 2 2 3 1 3 2

2 4 4 4 2 3 1 4 3 2

( , , ) 2 2

2 4 4 4

t t t t

t t t t t

V t x y e x e e e xy

e e e e e y

− −

− − − −

= + − + +

+ + + − −
. 

At 2t =  we get 
4 4 5

2 2 4 5 4 6 5

, 2 2
( )

2 2 , 3 4 8

e e e
H t

e e e e e

 −
=  − + − 

. 

And compute [ ]min 2( )H tλ =  13,15.  

Obtain the estimation:  

( )
[ ]

0 0
2 2

min 2

.
13,15( )

x t
H t

δ δδ
λ

= = =  

3) For system (12) we obtain the estimation at  2 3t≤ <  

( )
[ ]

0 0
3 3

min 3

.
0,67( )

x t
H t

δ δδ
λ

= = =  

 
The dynamic of the switched system and coinciding 
Lyapunov functions are shown on Figure 2. The Lyapunov 
functions are constructed and estimations of solutions 

( ) , 1,2,3ix t t =  are computed for three time intervals. The 

Lyapunov functions of each time interval are expanded or 

 
Fig. 2.  Coinsiding Multiple Lyapunov Functions  
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narrowed depending of stability of each system analogically 
to Example 1. But in contrast to Example 1 the ellipses of 
curve levels of the Lyapunov functions are coincided at the 
switched moments. 
 

IV.  CONCLUSION 

 
We obtained the estimation of solution of switched system 

given by linear systems using the Lyapunov function method. 
The Lyapunov functions were selected in the quadratic form 
with matrix exponential. This investigation is made using 
two tools: quadratic multiple Lyapunov functions and 
coinciding multiple Lyapunov functions. 
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