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Abstract—We investigate a switched system given by a set of
linear systems. We offer tools of qualitative system analysis
using multiple Lyapunov function method and obtain an
estimation of system solution at final time moment depending of
initial state. The estimation is obtained by composing of
perturbations of separate subsystems on each time interval of
switched system.

. INTRODUCTION

Many problems associated with the investigation of

switched systems are related to automatic progrdimma
control [11] and stability [2],[7],[12],[21],[27]44]. In [22]
challenging problems for stability and control methybrid
dynamic system framework are posed.

One of the major problems in hybrid and switched
dynamic systems is the establishing of their keypprty of
stability, which is important in controller desig8tability

owadays many complex processes in real technigdlay prove also critical for real-time systems, edutsel
Nsystems have changeable dynamics and very oftein legstems, and hybrid systems in general that arisermputer
to the study of hybrid and switched dynamical syste science problems where verification tests are lddéte.
They are of a major research interest due to the& as Relaxing demands in the search for a stability proay be
models in many applications in computer science anfkcessary for a specific problem. For an overviéwesults

systems control. These systems have dynamics eitéral
modes and their transitions from one mode to atleeurs if
solution reaches definite conditions. Such systeambine
both the complex dynamics described by linear ailinear
differential equations, and logical switches whichuse
transitions of technical systems for a various nsodé
operation [1],[3],[9],[18],[25]. They consist of@ntinuous-
time and a discrete-time process, which interac¢h whe
logical law or decision-making process. Continucargd

on hybrid stability see [15], [8], [14], [20]. Sonresults
assume arbitrary switching between locations, ands i
possible to look for a Lyapunov function common &ib
locations [20]. Another stability criterion is miple
Lyapunov functions [3-5], [16] one, and piecewisgadratic
Lyapunov function [10],[11]. Each location is assthto
have a Lyapunov function and in [9] the informatiabout
stability is given by available tools from non- sotio
analysis to study the gradient information of tlndidate

discrete subsystems can be represented by systéms|gapunov functions. Paper [13] presents a novel ghotia

differential and difference equations, respectiyvaliiere the
logical laws or decision-making processes are esgae by a
finite automaton or a discrete system. Switchedesys are
described by set of linear differential equatiorithviogical

elements of time-switch type. A time-switched coliér can

be used in a continuous system to achieve bettéorpgance
benefits [17],[19]. These systems have
applications in control of mechanical systems, mnative
industry, flight and air traffic control, switchingpower
converters, process control, intelligent vehicleghiiay
systems, robotics, etc. Examples include automatjstems,

repetitive, computer disks drives, automation, nvech

control, high-level flexible manufacturing
intelligent transportation systems, highway
maritime and air traffic control systems, contrgstems of
modern spacecraft, electrical systems, chemicalgsses.
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predictive control scheme that achieves input-&best
stabilization of hybrid systems. Input-to-state bdity is
guaranteed when an optimal solution of the optitiona
problem is attained. In [26] it is proved that timear hybrid
automata can be reduced to a linear discrete-tiystems
with periodic coefficients. Moreover it is shownaththe

numeroygear hybrid automata admit a periodic trajectaapd the

theorem for asymptotic stability of the periodigjéctory is
given. It is applied to prove the stability of tilssitched
system.

The main purpose of the paper is to find the estomaof

systemssolution of switched systems with a time-switch tcolher
tramspo described by linear subsystems. Using the estimstfor

separate subsystems, which are obtained with thieothef
Lyapunov functions, and using the continuity coioditof
solution at the switching moments, we get the eston of
the origin switched system solution at the final nmemt
depending on initial state. Using the Lyapunov fiorc of
quadratic form with matrix exponential the estiroat of
solution are obtained. We get the final estimation
composing perturbations for
Moreover we consider the scalar case of such sgstem
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Il. PRELIMINARIES

A. Switched System in General Form.

We consider a switched system given by a set efalin
subsystems which evolve over finite time

T =[t_,t], i =LN . The moments of time,,t,,....; ,...1

intervals

initial conditions. Therefore for arbitrarg >0 all solutions
starting from J —neighborhood will not leavee(d) -

neighborhood. And contrary, for arbitrarg >0 there is
O(€) >0 such that | x(t,)|< e if |x(0)kJ. The paper is
devoted to the problems of estimation of solutiomsthe

finite time intervals, so the calculation of thesmues. As
subsystems are linear, the Lyapunov functions afdgatic

are calledswitching momenisSuch switched system can beform are used.

written as a family of systems which are describgd
x(t)=Ax(1), i=LN, t=0
where x(t) O R", A - constant matrices.
For solutionsx = x(,, t) the continuity condition
lim, Xt =9 =lm, Xt % =1 N
holds at switching moments.

1)

)

B. Switched System Given by Scalar Equations

A particular case we consider the switched system

functions over the time interval, =[{_,,1], i =1,3 given
by three linear scalar systems

X(t) = A X()+ B y(9

y(O) = A4y,
where x(t) DR", A/, A,,b - are constant numbers.

®)

For solutionx(t) of system (3) the continuity condition (2)

holds at switching moments too.

C. Statement of the problem

The main goal of the paper is to find the estimmabbthe
solution of switched systems in general form (1¥ an
scalar form (3) depending on the initial state. ¥éculate

the estimations of solutions|x(t,)| at the final

moment =t . The switched systems presented by set &f general

subsystems which are linear differential equatiovigh
constant coefficients are considered. Each of tiisystems
describes the evolution dynamic on

the finite time

The main goal is to find the estimation of systdfjsand
(3) depending of initial state. We compute theneations of

solutions|x(t, )| at the final momertt=t, .

At first we obtain the estimations of solutionssefparate
subsystems using the method of Lyapunov functidiext
stage is following: taking into account the corwtiti(2) of
continuity between subsystems at the switching nmispave
obtain the estimation at the final moment. We det t
estimation by composition of perturbations for Separate
subsystems.

We use the following vector norm:

(0= 2% ()

Paper was organizing as follows. At first we dedhw
particular subsystems and obtain the estimatiorext Me
collect all particular results and compute thelfigstimation
of initial switched system. This investigation isde using
two tools: quadratic multiple Lyapunov functions dan
coinciding multiple Lyapunov functions.

Ill.  TooLs OFQUADRATIC MULTIPLE LYAPUNOV

FUNCTIONS

A. Estimation of Solution of General Switched System.

It is known that for the linear system with constan

coefficients
X)) =AY, XHT R,t=0

solution is x(x,,t)=€"% where matrix
exponential has the form
A t . Lt t«
Mo |+ A+ At A+,
1 2! k!

intervalt_, <t <t i=1N. Subsystems can be either stable Anq4 the solution of the system can be estimateti e

or unstable.
We assume, that initial state of switched systejnafid
system (3) are satisfied to

[x(0)ko.
It means that all solutions of the systex(0) are in —
neighborhood of equilibrium at the initial time
moment =t .

On the separate time intervals the subsystem wditices

use the Lyapunov function, which has a quadratimfi2]

¥ ek

V(x =X H()x H(h= e~te™.
This form of Lyapunov function describes the eviolutof
process the most exactly. The spatex t) <a is a middle

of ellipse which goes out from the neighborhopq |<a

5 At

V(xt)=x§x%=(e
or

A are described by the systems of linear differéntigdut changes along the solutions x(x,,t). The multiple

equations, having the continuous dependence ofi@otuon
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Lyapunov functions of the switched system are shamn
Figure 1.

Theorem 1. Let the initial state of the switched system (1)

satisfied the conditiofx(0) kK & . Then att =t,, inequality

° ()

,“j/‘min[Hi(E)] |

holds, whereH, (t) = e ¢ ) At =1 N, = 0.

Ix(t, —0) <

Proof. We consider the first time interval of dynamic

evolution of system (1):
x(H)=AXY, XYOR, p< i<, t=0.

We select the Lyapunov function in such form
V(x =X H()x H()= e~ e

(%)

Fig. 1. Quadratic Multiple Lyapunov Functions

For the Lyapunov function the bilateral inequality
Aol HLO1 X() P V() 9= Al HOOT X P
is hold.
A complete derivative of functiol,(x,t) for the subsystem

(5) yields
SV00,0= X () H(OX 0+

+X! (t)% H, () x(0) + X () H () Xt) = 0

Therefore, at arbitraty: 0<t <t, Lyapunov function along
the trajectories is constant i.e.
Vi (X(1), ©) =V,(X0),0)= const, & t<t.
Obtaining
Ain [ H(t, = 0)][x(t, = 0)” <V, (x(t,— 0),t,— 0)=
=V,(X(0),0)= A, [ H, (0] x(Of =] x(0)°
And for the first time interval we get inequality

1XO)|
-0 K —=——.
SN N

We consider the second time interval, and the sibsy

xM=AxY, XYOR, tst<t.  (6)
The Lyapunov function on this time interval hagerf
V(6= X Hy()x H()= g% ghltn
The bilateral inequality

Ain[HLO1 X0 P V(D) ) < Ao L HLOT1 XD [
is hold.
The complete derivative of functiow,(x,t) for subsystem

(6) is
d
avz(x(t), )=0, t<t<t,
And
V,(X(1), 1) =V,(x(t+0),t+0)= const, t < t< t,.
From here
AinlH (8, =0)]| X(t, = 0) PV, (X(t,~ 0),t,— 0)=
=V, (X(t, +0),t,+ 0)<
< Al H At +0)] [ X(t,+0) F= [x(t,+ O) f
And for the second time interval we get

IX(t, ~0)|< [X(t, +0)

\/ /]min [H Z(tz)] .

So the continuity condition (2) takes place thenol&in

x(0
1%, - ) & XO)]
VA Ho (1A HL)]
holds at the switched moment.
Continuing the process farther, we get

1%, (t, - 0) kX

,“j/‘min[Hi(E)] |

concluding the proof of the Theorem 1.

(7

B. Obtaining the Estimation of Scalar Switched System

Consider the linear scalar system
X() = A () + by
y(t) = A, (1), M # Ay

(a.8)=(10

eigenvaluel =4, and eigenvalue(a,,5,)=(b,A,~ 1))

The eigenvector corresponds  to

corresponds to eigenvalde= A, . Therefore the fundamental
matrix of solution is

« (t){e”ﬁ e }
0 (A,-4)e"
So
1 b
SCR AL
then
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eht be?
e™ = X(t)X™(0)= X
() X7(0) {0 (Az_Al)eAzt:|
1 b TP et 2 (e - e
x = /]2 _/]1
0 (Az _/]1) 0 gt
The matrix H(t)=e*'€* of Lyapunov function

V(xt)= X H()x has aform

M0 {hn hlz}
hJ.2 h22
where coefficientsh;,h,,h,, which are depended of;, 4,
and can be computed.
And we obtain a Lyapunov function

V(X% 9=hy()X+28,() xy B() ¥, (8)

The eigenvalues of matrix (t) can be obtained from the

characteristic equation
hl(t) -

ha() [_
ha(0)

def{H ¢)-«1]= de' (01"

We get
RCIORS (CRCRUNO BN CYCRINTRRTITE

Example 1.Consider the switched system on three time

intervals: 0<st<1, 1<t<2 and 2<t<3. We compute
the estimatiodx(tg)| at the time moment= 3.

The initial state of the solution of system (3)tat O is
equald, : [x(0)| = g,.
1) Over the time interval0<t <1 the system coefficients
are A, =-1,1, =0,b=1. Therefore the system has a form

X(t) = =x() + y(1),

y(t) =0.
Lyapunov function (8) has a form:
V(t,x y)=€ X+2&(1- k) xy[(l— t92+:|] A,
The eigenvalues of matribH (t) at t=t, are
AL (H() =

:%[(l—e‘)2+(1—e2‘)]i_;(1‘ EN (@ &) 1+ Bf + 4

©)

And compute A, [H(t)]=10,58,4,,,[H(t)] = 0,54.
The estimation of solution at=1:

o) o,
=0 = (v = 0 .
|X(t1)| (! \//]min [H (tl)] \/0, 54

2) Over the time intervall<t < 2 the system has a form
X(1) ==X+ Y9
y(t) = =2y(1).

(10)

(11)

Lyapunov function (8) yields:

V(txy)=(e)X+2e(8- 9 xy(( - 'F+ ‘9 °.
The estimation of solution att=2over the interval
1<t < 2we get taking into account the initial stade which

has been computed in (10):
0_0

X(tz) =0, = =
| | ’ \//]min [ H (tl)] /] min [ H (t 2)]
= 50 = 50 .
JJ0,5424,5 /13,23
3) On the interval2<t < 3 system has a form
X(t) = =2x()+ Y1)

y(H) = 2y(t).

(12)

Lyapunov function:

V(L x, y):(é“)>8+% (- &) xy

1, -
+[1_6(e 2t _ ezt)2+ e4:| y'e
The estimation of solution at=3:
x()|= 2 -
Vi [H )] Ao [H €] A, [H (1]

_ % __ 9

~ J0,54024,510.05 / 0,6615

The multiple Lyapunov functions constructed for sthi

switched system are given on Figure 1. One cantlsee
Lyapunov functions constructed for three time inéds. The

initial condition is assuqu(0)|:50:1. The Lyapunov

functions of each time interval are expanded oravesd
depending of each system stability. The estimatiofis

solutions |x(t)[,t=1,2,3 are computed at each time
moment.

C. Tools of Coinciding Multiple Lyapunov functions

Proving of the Theorem 1 at the time moments ,

i =1,N we have too strong restriction. The first resimictis
the requirement for the curve level {®-1) - Lyapunov
function V,_,(x,t) on (i —1)-step, which have the ellipse
form on the ending of(i -1)-step. At the switching time
moments this ellipse is inside of the curve levef i -
Lyapunov functionV,(x, t) , which is a circle on the starting
of i - step.

In this case we impose a weaker condition, wherctinee
level of i - Lyapunov function on(i —1) - step is an ellipse

which coincides with the ellipse of previous Lyapun
function at the moment of switching (see Figure 2).
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Theorem 2. Let the initial state of switched system (l)unctions. Therefore we hav{a<(0)|:60 and three time

satisfies the condition|x(0)kJd. Then at t=tthe
inequality
9]

t, - 0) K ———x——,
|X( )F V/]min[HN(tN)]

(13)

holds where

1 . N B B
Hy (ty) = |‘J g A it I‘l et =0.
i= j=

intervals: 0<st<1, 1<t<2 and 2<t<3. We compute
the estimatior|x(t,)| at the time moment=3.

1) At the time interval 0<t <1 the system has a form (9),
and the estimation yields (10).

2) At 1<t<2 for the system (11) “deformed” Lyapunov
function is

V,(x )= X (6™t et gt b @) x Tx M),

The proof is made analogically to the previougare

Theorem, by keeping in mind that for the first timgerval
0<t <t, Lyapunov function is

V,(xt) = X H,(f)x H (= et er.

Fig. 2. Coinsiding Multiple Lyapunov Functions

or
V,(x )= (e Y M xe k(& EY)

and for the second time interval we select the qdaéd”

Lyapunov function

V,(xt)=(CeM Y Gt x (€' EcéY

where C, is a non-zero matrix with constant coefficients. A

condition coinciding at the switched moment=t,
determines the matrig, is following
e‘Aﬂl = g e_AQtl .
From here we obtain
C,=ehgdn,

At the second interval, <t <t, the Lyapunov function

V,(x )= X (e¥ &t ettt b @) x Tx H)t,
where

H,(t) = g () g ATt AL GALEY

Example 2. We estimate the same switched syste
considered in Example 1 using the coinciding Lyajwun

H,(t) = (€% e¥t g4t gt &t &)
Compute:

o o e’ 0 s e’ (e'-¢?) ,
(e—l _ e—z) a2 0 o2
[ (e-e]]
0 e
ATt e 0 AL e (1— e)
Al = 1=
© {(e‘—ez‘) é‘}’ e {o 1 }

iy 1

From here we obtain matrik,, (t)
H,(t) =
_ e, @28+ &2
e -28"+€7% E+2&+4&-48-487

Lyapunov function:
V(t,x y)= & >€+2( d-28"+ é‘z) X¥
He+2d i rad?-ad - ad )
At t =2 we get
e’ 2¢' - 2¢
H,(t,) = ' :
2(t2) {2e“—2e5, 3¢+ 4é- 84
And computeA,,, [H (t,)] = 13,15.
Obtain the estimation:
o, o,
(L) == =%
A [HE)] V13,15

(14) 3) For system (12) we obtain the estimation2att < 3

=90, = 50 = 50
P e [H®)] 067

x(t)|

The dynamic of the switched system and coinciding
Lyapunov functions are shown on Figure 2. The Lysypu
functions are constructed and estimations of swmisti

Mx(t)|.t=1,2,3 are computed for three time intervals. The

Lyapunov functions of each time interval are exmghar
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narrowed depending of stability of each systemamiahlly [11] Koutsoukos X.D. and Antsaklis P.J. “Design of sialvig

to Example 1. But in contrast to Example 1 thepe#is of switching control laws for discrete and continutinse linear
. L systems using piecewise-linear Lyapunov function§&chnical
curve levels of the Lyapunov functions are coindi@g the Report ISISTechnical Report 1SIS-2001-002, ISIS, 2001.
switched moments. [12] Langerak R. “Tools for Stability of Switching Line&ystems: Gain
Automata and Delay Compensation.” Proceedings ef#th |IEEE
Conference on Decision and Control, and the Europ&ontrol
Conference005 Seville, Spain, December 12-15, 2005.
IV." CONCLUSION [13] Lazar M., Heemels W. P. M. H. “Predictive contral bybrid
systems:input-to-state stability results for suliropl solutions.”
. . . . . Automatica45. 2009, pp. 180-185.
_We Obt_amed the es“mat'on of solution of SWIthdtem [14] Liberzon D. and Morse A.S. “Basic problems in sigband design
given by linear systems using the Lyapunov functiethod. of switched systems”.IEEE Control Systems Magazin&9:59-70,
The Lyapunov functions were selected in the quadfatm 1999.

W|th matnx exponent|a| Th|s |nvest|gat|0n |S made|ng [15] Lin H., Antsaklis P. J. "Stability and stabilizaibj’l of switched linear

. ; : : systems:a survey of recent resut€EE Trans. Autom. Contrd4.,
two tools: quadratic multiple Lyapunov functions dan 2009, pp. 308-322.

coinciding multiple Lyapunov functions. [16] Liu J., Liu X., Xie W.-C. *“Uniform stability of sitched nonlinear
Systems”Nonlinear Anal. Hybrid Systen3s 2009, pp. 441-454.

[17] Malborg J.Analysis & design of hybrid control systemsPh.D.
Thesis, Department of Automatic Control, Lund Umsiy of
Technology, Lund 1998.

[18] Manna Z., Pnueli A.: “Verifying hybrid systems”.Hybrid systems. —

. . LNCS 736. -Berlin: Springer-Verlag, 1993. - pp.4-35.
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