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APPROXIMATION OF FUNCTIONS FROM THE CLASSES C g’ o
BY BIHARMONIC POISSON INTEGRALS

K. M. Zhyhallo and Yu. I. Kharkevych UDC 517.5

We deduce asymptotic equalities for the upper bounds of deviations of biharmonic Poisson integrals on
the classes of (v, 8)-differentiable periodic functions in the uniform metric.

1. Statement of the Problem and Auxiliary Statements

Let L1 be a space of 2m-periodic functions f(¢) summable on (0,27) with norm

1Al = 1Al = / |f(@)ldt,

let Lo, be a space of measurable and essentially bounded 2m-periodic functions f(t) with norm || f|ec =
esssup | f(¢)|, and let C be a space of continuous 2m-periodic functions f(¢) withnorm || f|c = max | f(2)].
t

For each function f € Ly, we consider a function
17 R — k
B(p;f;x):—/f(t+x) —+Z 14+ -(1-p% pkcoskz dt, 0<p<l,
T 2 b 2
e =

which is a solution (see, e.g., [1, p. 248]) of a biharmonic equation

A%B =0,
A%B = A(AB) A—ia—2+li 9
B Ct T2 oo \Pap)

We set p = e~ /% and denote the biharmonic function B(p; f;x) by Bs = Bs(f:x), § > 0. Itis called a
biharmonic Poisson integral. In the present paper, we study the approximating properties of the biharmonic Poisson
integral on the class of (i, §)-differentiable continuous functions.

Let f € C andlet a; and by be its Fourier coefficients. If the sequence of real numbers ¥ (k), k € N,
and a fixed real number § are such that the series

kX::l (ak cos (kx + ?) + by sin (kx + 71_2,3))
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is the Fourier series of a function ¢ € L, then ¢(-) is called the (i, B)-derivative of the function f(-) in
Stepanets’ sense [2—4] and denoted by f; ﬂw (). In this case, it is said that the function f(-) belongs to the set C gf .

If feC [13/, and fﬂw eMN, N C Ly, then we say that f € C g’ It. Further, if 9t coincides with the unit ball of

the space Lo, i.€.,

N = {fﬂ‘/’ € Loo:esstsup|fﬂ"’(z)| < 1} :

then the classes C g N are denoted by C ;3” oo For ¥(k) = k™", r > 0, the classes C ;3” o cCoincide with classes

(r)

W,s oo Introduced in [5] and fﬁw = /g is the (r, B)-derivative in the Weil-Nagy sense. Moreover, if § = r,

r € N, then fﬂvf is the derivative of the function f of order r. In this case, C /;/j oo are the well-known Sobolev
classes WZ,. In the case where = r + 1, r € N, the classes Wﬂ’ ~ coincide with the classes of conjugate

functions W;o
It is convenient to treat the sequences ¥ (k), k € N, specifying the classes C woo as restrictions to the set of
natural numbers N of certain functions ¥ (¢) of continuous argument ¢ > 1 running through a set It :

M= {w(z) Y(0) > 0,9(11) — 20 (11 + 12)/2) + ¥ (12) = 0

Vi1, ta € [1, 00), tl_i)rgo Yi(t) = 0}.

Following Stepanets (see, e.g., [3, p. 93] or [4, p. 160]), every function i € I is associated with the charac-
teristics

n@) =00 =y~ (Y©)/2)  and  p@) = pys) = D

n(t)—t’

where ¥ ~!— is the function inverse to . By using the function p(;¢), we select subsets Mo, M. and
Moo of the set IN as follows:

Mo={YeM0<pu(;t) <K Vt>1},
Me={Y eM0O< K; <u(;t) <Ky <oo Vt>1},
Moo ={¥V eMO0< K < pu(y;t) <oo Vt > 1},
where the constants K, K;, and K> are, generally speaking, different in different relations and may depend

on .
Following Stepanets [4, p. 198], the problem of finding the asymptotic equalities for the quantities

/2 _ N .
5(Cﬂ,oo»Bs)C—f€sg§ 176 = Bs(f3)llc @

as § — oo is called the Kolmogorov—Nikol’skii problem for the class C ‘;/, oo and the biharmonic Poisson integral
in the uniform metric.
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Note that the solution of the Kolmogorov—Nikol’skii problem in the class W/, was found by Kaniev [6] and
Pych [7]. Moreover, Kaniev [8] also proved that the quantities & (Wo’o; Bg) c and & (er ; Bg)1 (W] is the set
of 2 7r-periodic functions for which || £ ) (¢)||; < 1) are equal, i.e., the estimates obtained for the uniform metric
remain true for the integral metric. The approximating properties of biharmonic Poisson integrals in the classes of
differentiable functions were also studied by Falaleev [9], Zhyhallo and Kharkevych [10, 11], Zastavnyi [12], and
other mathematicians.

The aim of the present paper is to study the approximating properties of biharmonic Poisson integrals from
the viewpoint of the Kolmogorov—Nikol’skii problem on the classes C /:3// oo Of 2m-periodic continuous functions
f(-) in the cases where these classes contain smooth and infinitely differentiable functions, i.e., for ¥ € M and
Y e Mo

For the biharmonic Poisson integral, we set

(1—[1+yu]e‘“)%, Ofufé,
) = y) = (3)
(I=[1+yule™) ACL) u > !
ZC) I

)
where y = y(§) = 5(1 — e~ 2/%) and ¥ (-) is a function defined and continuous for ¥ > 1. Repeating the
Stepanets reasoning from [4, p. 183], we can show that if the Fourier transform

() = 15(t) = %/t(u) cos (ut + ,3771) du ()
0

of the function 7(-) given by relation (3) is summable on the entire real axis, i.e., the integral
o0
a0 = [l )
—00

is convergent, then, for any f € C ;3/’ oo the equality

+o00
1@ = B0 =y 6 [ A (x4 5 )i >0 ©

holds at any point x € R Thus, by using the integral representation (6), we arrive at the following expression for
the quantity (2):

+o00

& (C;p’oo; BJ)C = sup |¥(d) / fﬂ‘” (x + %) T()de| . (7)

v
fECB.oo —0o0 C
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2. Asymptotic Equalities for the Upper Bounds of Deviations of the Biharmonic Poisson Integrals
from the Functions of the Classes C f-'f/, o

The following assertion is true:

Theorem 1. Let  belong to M, let the function g(u) = u>y(u) be convex downward on [b, oo), b >
1, and let

o0

/ 80 4y < oo (8)

u

1

Then the following asymptotic equality is true as § — 00 :

| £P(x) 1 17
e(Cy iBs) == swp |+ P +0| 5 [ Pv@dei+ o [ ty@de].
B, c 3§ 2 F F
feCy oy c 1 5

1
where fo(l)(-) and fo(z)(-) are the (Y, B)-derivatives of the function f(-) for B = 0 and Y (t) = " and
1
vi(t) = 2 respectively.

Proof. We represent the function t(u) defined by relation (3) in the form of the sum of functions of this sort

o(u) and v(u):
uz  u\ y(l) 1
(5+5) 56 °=v<s

p(u) = 5 (10)
(M_ E)M .
> Y5 v YT
2
(1—[1+Vu]e‘”—u7—§)%, Ofufé,
v(u) = 5 (11)
(1—[1+yu]e_"—u7—%)f/f(i;), uzé.

By ¢(-) and »(-) we denote the Fourier transforms of the functions ¢ and v, respectively:

o) = @s(t) = l / ¢(u) cos (ut + 'B—”) du, (12)
T 2
0
D) = vg(t) = %/v(u) cos (ut + 'BTJT) du. (13)
0

Further, by using Theorem 1 in [13], we show that the Fourier transforms ¢(-) and D(-) are summable on the
entire real axis.
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To show that the Fourier transform ¢(-) is summable on the entire real axis, it is necessary to show that the
integral

Ap) = / 195(0)] di (14)

is convergent. To this end, by Theorem 1 from [13, p.24], it suffices to prove the convergence of the following
integrals:

1/2 0o
/ uldg' (). / u — 1]1d¢’ ().
0

1/2

‘ ! ﬁT[
sin —
2

u

0o 1

/ el 4 [ o =) —g(L )|
u

0 0

It follows from relation (10) that

v (1) 1
do'(u) = —=du, uel|0-).
v (8) 8
Therefore,
r 1)
14
do’ = . 15
[ el = s (s)
0
By using the inequalities
1/2 00 00 o0
[ widgwi = [ulagl wd [ =il < [ gl
1/8 1/8 1/2 1/8
we arrive at the following estimate:
o0
[ g’ (16)
1/8
: . 1 b b
in each interval 33 and g,oo (for § > 2b).

It follows from relation (10) for u > 3 that

2

u du
2

V()

do'(u) = (w(éu) +2 (u + %) Sy’ (Su) + ( + %) 82w”(8u)) (17)
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In view of the fact that the function ¥ () is convex downward and decreasing for u > 1, this yields

b/§
[ iy’
1/6
b/8 b/8 b/8
oL (“_3+ 2)52¢ff(5u)du+_ (u n )3|¢(5u)|du+L wy (Su)du. (18)
- ¢(5)1/8 2 8 ¢(5)1/5 ¢(5)1/5

Since ¥ (du) < (1) for u € |:8 ?), we get

b/8 b/é

v K
/uW(Su)du < W(5) / udu = 29 6)

1
V()
Integrating the first and second integrals on the right-hand side of inequality (18) by parts, we find

b/é

K
/ uldg' (u)| < Wl@ (19)

1/8

To estimate integral (16) in the interval |:§’ oo) , we use the relations

ull)n;o u?yr(u) =0, (20)
Jim w3y (u) = 0. 1)

We now prove these relations. Indeed, since the function g(u) = u?V (u) is convex downward for u > b > 1,
the following cases are possible: either limy,—o0 g(#) = 0, or limy o g(u) = K > 0, or limy_—o g(u) =
Let limy— 00 g(u) = K > 0. Then there exists 0 < K; < K such that g(u) > K forall u > 1 and,

hence, ¥ (u) > —21 However, this contradicts the fact that, according to condition (8), the function uy (1) is

summable on [1,00).
Now let limy— o0 g(u) = o0, i.e., forany M > 0, there exists N > 0 such that the inequality g(u) > M
holds for all ¥ > N. Then

x N X x
/ulﬂ(u)du = [uw(u)du +/ iu)du > Ky + / %du =Ky + M(Inx —InN),
1 1 N N

which also contradicts the condition of summability of the function uv (u) in the interval [1,00). This enables
us to conclude that relation (20) is true.
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We now prove (21). The function g’(u) is summable on [I,00). Then
lim /u/Z”g’(x)dx = 0.
Uu—>o0

Since, for u > b > 1, the function g(u) is convex downward, the function (—g’(u)), for u > b, does not
increase and, hence,

u

1
/ g (x)dx > — (u — —) (Quy(u) +u 2y "(u)) = -5 (2u2w(u) + u31ﬂ’(u)) )

u/2

This and (20) imply the validity of relation (21).
In view of (17), for any function ¥ (-) € M, we find

o0

/ ulde' ()]
b/é§

[e.¢]

/( )Szw/’(Su)du—i—m (u + )8|W(5u)|du+m wy (Su)du. (22)

b/§ b/§

Integrating the first and second integrals on the right-hand side of inequality (22) by parts and taking into
account relations (20), (21), and (8), we obtain

oo

K
/ uldg' (u)| < WZ@ (23)

b/§

It follows from relations (15), (19), and (23) that

1/2 o0
/ 1 / 1
/u|d(p (u)|=0(82w(8)) and / |lu —1||de (u)|=0(821/f(8)) as & — 0o, 24)
0 1/2
In view of relations(10) and (8), we find
@l v 1 [ (u
/ Vo) ) ( w5 ot g [ (5 5) vonan= i
1/8
Finally, we estimate the integral
1 1-1/6 1
o) gy, [0 gy, [0S0 S0l g

0 1-1/8
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Relation (10) can be represented in the form

¥ (1) 1
(1—/\5,1(”)) m, 0<uc= 35
p(u) = o (8u) . (26)
u
(1 —/\5,1(14)) W((S) , U= ga
2y
where As (u) =1— 573 By using relation (26), we get
1 1
e (1_)“8,1(1—”))%’ l-s=susl .
Y (8(1 —u)) 1
(I_AS,I(I_“))W, Mfl—g,
l—2s1(14+u m, —lfufl—l,
(1= 2s.1( ) ) 5
o= pEafuw) 1 =
u
(1—18’1(1+M))W, Mig—l.

We now estimate the first term on the right-hand side of (25) by adding and subtracting the expression As ;(1—
u) — Ag,1(1 + u) under the modulus sign in the integrand. Thus, we get

1-1/8 1-1/8

1 —u)— (1 Asi(l—u)—As1(1+u
[ leimo-edrol,, Aol =) = Asa (L +0)]
u u
0 0
= ea 1 sa(1 sl
—u)— +u)+ —u)— +u
4 / (1 —u) = (1 +u) + Ag,1 (1 —u) — Ag1( )|du. (29)
u
0
It is easy to see that the first integral on the right-hand side of inequality (29) satisfies the estimate
s As.a(1
—u)— +u
/ |As,1( ) — As,1( )‘du _ o(). 30)
u
0

1
Since relations (27) and (28) are true, for u € |:O, 1-— g] , we obtain

5 8
%w(l —u), Asga(l4+u)=1~- L)w(l + u).

Aol =) =1- Y6+ )
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B,00
Then
1-1/6
[ [t =) (1 +1) + (A5 (1 =) = 2511+ )]
) u
e v |du [ ye)  |d
u u
=< 0/ |<P(1—M)|’1—m Pl 0/ |¢(1+M)|‘l—m o 3D
The function ¢(-) satisfies the conditions of Lemma 2 in [13]. Therefore,
1/2 oo
0@l < e+ o] + [ uldg'e]+ [ u=11la'e)| == Hp).
0 1/2
Hence, we find

1-1/8

/ lo(1 —u) — (1 +u) 4+ (As,1 (1 —u) — s 1 (1 + u))|du

) u

S wea - -yl T e+ w) - ye)
—u)) — +u)) —
= o 0/ ot | e ¢y
By using relation (10) and estimates (24), we get
1

It is easy to see that, for ¥ € Mic, the integrals on the right-hand side of (32) satisfy the following estimates:

1-1/8 1-1/8

[ MO VO, _ o) g [ WL
0

WU 0+ 1) du = 0(1) as § — oo,

uy (§(1 —u))

whence, by combining relations (29)—(33), in view of (20), we obtain

1-1/8

wl—w—p+w] (1
/ v du=0 (8%(8))‘

0




1092

K. M. ZHYHALLO AND YU. I. KHARKEVYCH

Reasoning as above, one can easily show that the second term on the right-hand side of (25) admits the same
estimate. Hence,

1
du 1
[1ot = —pa 4w 5 =0 (—SZW)),
0

Thus, by Theorem 1 in [13], integral (14) is convergent.

The summability of the transform D(z) given by relation (13) on the entire real axis follows from convergence
of the integral

A(v) = / 165(0)] dt. (34)

In order that the integral A(v) be convergent, it is necessary and sufficient (see Theorem 1 [13, p.24]) that
the following integrals be convergent:

1/2 00
/ uldv' ()], / e — 1]dv' o). 35)
0 1/2
o0 1
‘sin'B—T[ /"’(—”)'du, /'”(1_”)_”(1+“)|du, (36)
2 u u
0 0

where v(u) is the function given by relation (11) defined and continuous for all ¥ > 0, .

1 1 b b 1
We now estimate the first integral in (35) on each segment |:O, §:| , |:§’ g:| , and |:§’ §:| , 6 > 2b. Denote

2

V) =1—e ¥ —yue™ — u

5 (37

1
By using (37), we represent the function v(u) of the form (11) on the segment |:(), —:| as follows:

v(u) =v(u) :/;8;

Relation (37) now implies that

1
Vu)=e ¥ —ye ¥ +yue ™ —u— -,

)

V() = —e " 4+ 2y —yue ¥ —1,

1
v(0) =0, v/(0)=1—y—g<0,
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whence, in view of the fact that
—1 42y —yu<e*, uel0,00),
we arrive at the inequalities
vu) <0, Vwm)<0, vV'(m)<0, u=>0. (38)

Thus, for the function v(-) defined by relation (11), in view of (37) and the third inequality in (38), we obtain

v’ (u) = _”(u)zi(si 0, ue [O, é] (39)

Therefore,

1/8 / 1/8 / N L1 ()
[ vl == [uaser =v(5) 75 5 (5) iy
0 0

By virtue of the relations

3

_ 2 1, u 2 2 3,
|v(u)|<@u+gu —{—7, [V (u)| < 382+gu+§u , u>0, 40)
we find
1/8 .
0

1 b
Further, we estimate the first integral in (35) on the interval |:§’ g] , 6 > 2b. By using the equality

o) =0 ) 2 L6 s L. @)
we get
b/§ b/§ ) 08 b/é b/§ )
1//5 v o) < ‘”(8)1//3 Al + g | ‘”(5)1/8 [Ty Gupd

2
By using inequalities (40) once again, in view of the estimate [v”(u)| < 3 + 3u, u > 0, as aresult of the

integration by parts, we obtain

b/§

, K
/ u !dv (u)| < WZ(S) (43)

1/8
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Further, we show that if the function uzw(u) is convex downward for u > b, b > 1, then the following

inequality holds:
dv'(u) <0, u>b/s,

Consider a function

5r) 1 e ¥ e ¥ 1 1
v(u) = g p—
u?z  u? 4 u 2 ud
We have
. v(u)
)= o2k, y>1-,
u
5 ) 2 +2e_“+e_“+ e_“+ e_”+
V) = —— — I R I I
u3 u3 u2 yuz 4 u u2§

1
= — (—2 + 27 + (1 + y)ue ™ + yu?e™ + z) ,
u3 )

— 6 6e™* de7" e 274 e ¥ e 2
V) =-F-—4 5 3V u3 —2y -7

u u3$

u2

1 2
=3 (6 —6e — (44 2y e — (1 +2y)u?e™ —pule ™ — 7”) )

Thus, in view of the inequality e ™ > 1 — u, we find
v(u) <0,

1 1 1 2
l~)/(7/t)>E(-Z-’*Z—ZM-’-(1-|—1—§) (M—u2)+yu23_u+%) :E(%_i_yuZe—u) >0,

1 2 2
ﬁ//(u) < (6 — 6+ 6u — (4 +2— g) (M _ u2) —(1+ 2)/)7/{26_” _ yu3e_“ . Su)
u

1 [ 2u?
=— (—% — (1 +2y)ue ™ — yu3e_”) < 0.
u

Finally, since g(u) >0, g’(u) <0, and g”(u) > 0 for u > b, b > 1, we conclude that

1 (A | 2
v (u) = (8—2ﬁ(u)g(8u)) = 8—25/’(u)g(8u) + gﬁ’(u)g’(f?u) + D(u)g" (Bu) <0

for u > —.

Further, we use the following assertions:

(44)
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Proposition 1 [4, p. 161]. A function v € N belongs to M if and only if the quantity

0 o
«=ngr Y O=varo.

satisfies the condition 0 < Ky < «a(t) < K, Vit > 1.

Proposition 2 [4, p. 175]. In order that the function v € IR belong to Mo, it is necessary and sufficient
that, for any fixed number ¢ > 1, there exist a constant K such that the inequality

V(o)
v =8

holds for all t > 1.

In view of relations (44) and (40) and Propositions 1 and 2, for functions v (-) from the class M, we obtain

1/2 1/2
/ u |dv' (u)| = — / udv'(u) = —%1/ (%) + gv’ (g) + v (%) —v (%) <K+ % (45)
b/§ b/§

Combining relations (41), (43), and (45), we arrive at the estimate

1/2

1
uldv'(u)| = 0 (1 + 3—) . (46)
0/ 839 (8)

In view of relations (20) and (21) and Propositions 1 and 2, we readily conclude that the second integral in (35)
satisfies the following estimate as § — oo

(o¢]

t/w—uwwwn=oay “7)

1/2

)

1
inequality in (38), we conclude that v(u) < 0 for [O, gi| . Hence, in view of the fact that

1 1 1
We now estimate the first integral in (36) on each interval [0, —i| , [3 1] , and [E oo) . By using the first

_ u?
e“fl—u—i—?, u >0, (48)

we find
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u

Prwl . v [ 2 u\d
v(u s UE W) du
0/ duzmof(—l—l—e + yue +2+8)u

1/6

va [ ((_ I _ ZZ)
SW(S)O/((1+V+5)+(1 y)u—|—2u du,

whence, by virtue of the inequalities

y <1, 1—y<%, (49)
—1+)/+l<—, (50)
5 382
we get
1/6
/ '”(Ll“”du:o((g%;((g)), § — oc. (51)
0
By using inequalities (48)—(50) once again, we conclude that
1 1
Y T YESTE A P
1/68 1/8
8 8 8
< 5311;1(5) / v (u)du + 33[;2(3) / uyr (u)du + 5311;3(5) / w2y (u)du
1 1 1
! 8
=0 (5%(5) /uzl/f(u)du) , 8 — oo, (52)
1

oo
—Uu

el , 1 [ e -1, w1
1/ ” du—w((s)l/xﬁ((gu)( ” + ye +2+8)du

1 i u u 1 1 T
<y [veo (g ey gag)a=o (w(s) /uw(u)du) BENES
! 8

Combining (51)—(53) and taking into account the fact that

8
/ w?y(u)du > K,
1



APPROXIMATION OF FUNCTIONS FROM THE CLASSES Cg'oo BY BIHARMONIC POISSON INTEGRALS 1097

we arrive at the following estimate for the first integral in (36):

0 ) 00
[v(u)| . 1 5 1
0/ ” du =0 59 ) 1/14 Y(u)du + —821//(5) B/uw(u)du . (54)

We now estimate the second integral in (36) on the segments [0, 1 — 1/4] and [1 — 1/6, 1]. Denote

2
Asp) = [1 4+ yule™ + 5 + %

This enables us to represent the function v(-) of the form (11) in the form (26). Further, for the function v(-), we
use the same reasoning as in deducing relations (27)—(32) and show that

1 1
d d
/|v(1 —w)—v(l +u)| 7” - / As2(1 =) — As2(1 + ) 7“ +OHW)), (55)
0 0
where
1/2 00
H®W) := )] + [v(D)] + / uldv'(u)| + lu — 1||dv'(u)].

0 1/2

According to (11), (46), and (47), the following estimate is true for the quantity H(v):

1

In addition,

1
[ [A5201 =10 = Asa(l + )]
u

u
0
1 1e" U 1
:/'V+ l—z(e"+e—“)+2(1+—) du = 0(1), §— oo. (57)
e u e 6
0
Comparing (55)—(57), we conclude that
[ Io(t =)= v(1 + ) 1
v(l—u)—v(l +u
/ ” du =0 (1 + 831#(8)) as & — oo. (58)
0

Therefore, by Theorem 1 in [13], integral (34) is also convergent.
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Thus, it is shown that, under the conditions of Theorem 1, the integral A(t) of the form (5) is convergent
and, hence, the Fourier transform 7(¢) of the function 7(u) = ¢(u) 4+ v(u) is summable on the entire real axis.
Therefore, for every f € C /-‘13# oo €quality (6) is true at any point x € R. In view of (34), we rewrite quantity (7)
in the form

+o0
£ (Cép,oo?BS)c = sup |Y(5) / 1y (x + %) (§(t) + D)) dt

fecy c
400
v AP
= s ) [ g (x4 §)owdr] 0 w@Ae). 59
fecy % c

Repeating the arguments in [2, p. 12], one can easily show that the Fourier series of the function

+00

fony = [ 1 (34 5) owar

has the form

(k2 kY 1
S[fel = Z (E + 8_2) 70 (ag coskx + by sinkx),
k=1

where aj and by are the Fourier coefficients of the function f. Thus,

+o0

¥ AP 1 UG
/ fﬂ (x+§) ¢)dt = 5%(5)( 5 + /o (x)), (60)

—00

where fo(l)(-) and fo(z) () are the (v, B)-derivatives of the functions f(-) (in Stepanets’ sense) for § = 0 and
1 1
() = 7 and Y (t) = a2 respectively. Combining (59) and (60), we conclude that

&)

> fo )

1
£ (C'g:oo; Bg)c = — sup + O (Y(©)AW)), §— oo (61)

82
fecy

C

Inequalities (2.14) and (2.15) from [13] and relations (46), (47), (54), (56), and (58) imply the following
estimate of the integral A(v):

1

A= 5y

] 00
/MZW(u)du + Wl(g) / uyw)du |, §— oo.
1 8

This and (61) yield (9).
Theorem 1 is proved.
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1
Note that Theorem 1 holds , e.g., for functions ¢ € I of the form (for ¢ > 1) : Y (¢) = 2 In*(t + K),

1 1 1
K>0 a<-1; ¥v@) = t—rln“(l + K), ¥(t) = t—rarctant, and Y (7) = t_r(K +e ), r>2 K>0,
a € R.
Further, we find the solution of the Kolmogorov—Nikol’skii problem for biharmonic Poisson integrals and the

classes C ,;// oo Of continuous functions in the case where ¥ € ; in particular, for the classes containing infinitely
differentiable functions.

Theorem 2. If  belongs to M, the function g(u) = u>y (u) is convex downward for u € [b,00), b > 1,
and

o0

/ug(u)du < 00, (62)

1

then the following asymptotic equality is true as § — o0 :

0(2) (x)

5t fo ()

1
5(C¢ 'B,g) = — sup
B.00’ 2
o0 C ] fECKOO

+0 (8%) , (63)
C

1
where fO(l)(-) and fo(z)(-) are the (Y, B)-derivatives of the function f(-) for B = 0 and Y (t) = n and
1
vi(t) = 2 respectively,

Proof. Let t(u) = ¢(u) + v(u), where ¢(u) and v(u) are the functions defined by relations (10) and (11).
We prove the summability of transforms ¢g(¢) and fi5(¢) of the form (12) and (13) on the entire real axis. First,
we show that the integral A(p) of the form (14) is convergent. To this end, we split the set (—oo, c0) into two
subsets (—o0,d) U (8, +0o0) and [—6, 4].

We estimate the integral A(¢) for |¢| > §. Consider the integral

/(p(u) cos (ut + ,8771) du
0

in each interval [0;1/6) and [1/§; c0). Thus, we get

00 1/6 00
[go(u) cos (ut + ﬁ%)du = [ + / @(u) cos (ut + 'BTn)du (64)

0 0 1/8
As follows from (10), for u € |:O, %) , we have
_ NN 3w® = YO (L) 2 2@
0= o(5) =t “O=sa ™ ¢ (5-0)= T
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Integrating the first integral on the right-hand side of equality (64) by parts twice, we obtain

1/8
pr 3y() . pr
/ @(u) cos (ut + T)du = 2t82w(8) ( + 7)
0
1/8

2y (1) t | Pr 1 . B
NEC (3 " 7) ~ [ oo (ur + 7) du- (69
0

Note that, in view of the convexity of the function g(#) and condition (62), relations (20) and (21) are true.
Thus, in view of the facts that limy— o, @(u) = 0 and limy,— o ¢’ (1) = 0, we conclude that

/ ©(u) cos (ut + ,3771) du = 258151(;()8) . ( + '8_”)
/8

N (R T sy
/8

1

269 (5) 2

1

Combining relations (64)—(66), we can write

o0

Br 3y Br
/(p(u) cos (ut + 7) du = t28W(8) ( + > )
0
1/8 00
— tiz ¢" (u) cos (ut + ,3771) du — tlz / ¢" (u) cos (ut + '3771) du.
0 1/8
Thus,
%) K 1/6
[ etncos (w4 Y aul < s+ / 0" @)ldu + / ¢ )l (©7)
0 1/6

The function ¢(-) of the form (10) satisfies the following evident estimate on the segment [0, 1/6] :

1/8

: FI0)
/ ol = 3o (68)
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1
Further, by using relation (17) and the fact that the function vy (§u), u € |:§’ oo) , is decreasing and convex

downward, we get

b/§ b/§ . b/8 b/§
u
"(u)|du < — du + —— — ) v" (Su)du.
Jwreontu = 5o [ v T [ (e 5) v v | (77 5) oo
1/8 1/8 1/8 1/8
(69)
It is easy to see that
b/8 b/s
52 Mz 1 K2 5 1 ,
v | (5 +5) vowan= s - o [ (wr5) v
1/8 1/8
Combining the last relation with inequality (69), by using the inequality
L (b-Dy@d)
- ou)du < _—’
7 | v = =50
1/6
we conclude that
o K 38 o K3
" 2 o
[ 1elau = o s [ (w5 ) vl an = 52 10)

sy () ¥(d)
1/5

1/8

By using relation (17) once again, in view of the facts that the function (1) is decreasing on [1,00) and
limy, 00 ¥ (#) = 0 and relations (20) and (21), we arrive at the estimate

1 r " K4
2 / lp” (u)|du < m

1/8

This and relations (67)—(70) imply that

o

/(p(u) cos (ut + 'BTn)du < %

0
and, hence,

o0
/ /(p(u) cos (ut + '%T)du dt < % (71)

[t]>=8 10
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We now estimate the integral A(¢) on the segment [—6, §]. Since condition (62) is satisfied, we have

8

/ ' ]o(p(u) cos (ut + '[%T)du
-5 0

00 1/6 00
< 28/ o) du = 2D (”— ”) du+ 2 (”2 )1//(8u)du
0 0

dt

(72)

AW 2 4 ¥ (8) - 521#(5)

1/6

The next estimate follows from relations (71) and (72) as § — o0 :

1
0= ()

Hence, the transform ¢(¢) (12) is summable on the entire real axis.

Further, we prove the convergence of the integral A(v) (34), where D(¢) is the Fourier transform of the
function v(-) defined by relation (11). To this end, we split the set (—oco, c0) into two parts [—§, 8] and |¢| > §
so that

8| oo 00
Av) = %/ /v(u) cos (ut + ﬁ?) du|dt + ! / /v(u) cos (ut + '37) duldt =1L+ 1. (73)
-8 10 |t|>8 0

We now estimate the integral

I B
11=—/ v(u)cos ut + — | du|dt.
T J_s 2
Thus, we get
1/6 { 5| oo
< —/ / v(u) cos (ut + '37) duldt + — / / v(u) cos (ut + ﬁ?) duldt. (74)
-5 |0 -5 [1/8

As already indicated, according to (11) and (37), we have v(u) = v TAAL)

for u € [0,1/8]. Hence, by using

. . v (9)
the first inequality in (40), we find
] §11/8 IB | § 1/8 w(l) § 1/8
T _
;/. /v(u)cos (ut+7) duldt < ;/ / [v(u)| dudt = m/ / [V(u)| dudt
-5 |0 -5 0 -5 0
28y (1) 1 2 2 3 K
U u u
e | GErs s e 7
0
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In view of condition (62) and inequality (40), we obtain the following estimate for the second integral on the
right-hand side of (74):

§| oo

%/ /v(u)cos (ut—i—'BTn) du|dt

-5 |1/8

%/8 ]o|v(u)|dua’t

—§1/8

IA

s 7 2 [ LT
= 5590 1/u10(u)du + 250 0) I/u Y(u)du + AT l/u v (u)du

1
=9 (8%(8))' Y

Relations (74)—(76) imply that

1
L =0 5—= ) . 77
=0 (5mm) o 77
We now estimate the integral
1 o0
I, = — / /v(u) cos (ut + ,B_n) du|dt.
b4 2
|t]>6 10

Integrating this integral by parts twice and taking into account the fact that v(0) = 0 and v/'(0) = 0, we
conclude that

1/
/ v(u) cos (ut + '37”) du
0
1/8

= ;v (é) sin (% + '37”) + tizv/ (é — O) cos (% + '37”) - [lz f v (u) cos (ut + 'BTN) du. (78)

0

In view of (20) and (21), we get limy— oo V(1) = 0 and limy—seo v'(u) = 0. Thus,
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o0

/ v(u) cos (ut + '37”) du

1/8

= —;v (%) sin (% + '87”) - tlzv/ (%) cos (5 + 'BTJT) - tiz / v” (1) cos (ut + ,3771) du. (79)
/8

Combining (78) with (79), we obtain

O]Z(u)cos (i 22 = (v () = (1) oo (4 22)

1/8
1

5 v "(u) cos (ut+ﬁ7) du—ti / v"(u) cos (ut—i—'%r) du.

0 1/8

According to (11) and (37), we find

(1 1\ v(1)
"(") (5) ®)’ 0

8
S (1Y) (1) s
’ (3) - (8) v T 8) v©) 81
Therefore,
® 1/8 oo
/v(u)cos (u[+ﬂ7n) du:_tin( )8:;(8) ( +'B2ﬂ)—[i2 /-i—/ v" (u) cos (ut+ﬂ7n) du,
0 0 1/§

whence, in view of the first inequality in (40), we get

o0

/v(u) cos (ut + ,377[) du| <

0

1/8
1

2 gzw(g) /|V"(u)|du+/|v”(u)|du . (82)

1/68

Further, by using relations (39) and (80), the fact that ©'(0) = 0, and the first inequality in (40), we obtain

W(l) K>
v ( ) Ve " 2Ye) 83

1/8

4 — ./ 1_ _
/|v w)|du = —v (5 0) =
0
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1 b b
Consider the second integral on the right-hand side of inequality (82) on each segment [ 5 E] and |:g, oo) .

By using (42) and reasoning by analogy with the proof of relation (43), we obtain

b/é

" K3
1//5 v (u)|du < W (84)

In view of (44) and (81), the fact that lim, .o v/ () = 0, and inequalities (40), we find

S yo) || (B\[ BB _ K
/"’ Gl = /d"(“) ()w&*‘”(S)‘ yE) - By ®

b/§

It follows from (82)—(85) that

[v(u) cos (ut + 7) du| < W
0
Hence, we get
I, = % / /v(u) cos (ut + 'BTJT) duldt = O (Wl(&) as § — oo. (86)

[t]>=8 10

Combining relations (73), (77), and (86), we arrive at the following estimate for integral (34):

1

Since the Fourier transforms ¢(¢) and Dg(¢) are summable on the entire real axis, we conclude that relation
(61) is true under the conditions of Theorem 2. Finally, by using (61) and (87), we obtain (63).
Theorem 2 is proved.

Note that conditions of Theorem 2 are satisfied by the functions ¥ € It which have have the following form
fort > 1:

In*(r + K)
tr

1
Y(t) = , Y() = t_’(K +e "), where r>4, K>0, aeR;

v()=1"e K y@)=W"(t +e)e X, K>0, a>0, reR.

Assume that the function u(-) = u(y;-) is connected with the function ¥ € M by relations (1). Theorem 2
yields the following corollary:



1106 K. M. ZHYHALLO AND YU. I. KHARKEVYCH

Corollary 1. If W belongs to Mo, the function g(u) is convex downward for u € [b,00), b > 1, and

lim p(y:1) = (88)
t—>00
then the asymptotic equality (63) is true as § — o0.
o0

Proof. We check that condition (88) guarantees the convergence of the integral ug(u)du, i.e., the

1
validity of (62). As follows from [4, p. 164] [see relation (12.24)], for any ¥ € I, the following inequality is
true:

v () b s
o <2(n(t)—t) YVt =>1. (89)
In view of (89), for any r > 0, we get
@) = o - ol <ol (100 -1, ©00)

By virtue of (88), the ratio (n(t) —t)/t approaches zero as ¢ — oo. Thus, by using (90), we conclude that,
for any r > 0, there exists a number fy = #o(r, ) such that the function "y (¢) does not increase for ¢ > .
Then

1]oug(u)afu —l/ 51//( ) K/

Note that, under the conditions of Theorems 1 and 2, equalities (9) and (63) give the solution of the
Kolmogorov—Nikol’skii problem for the classes C /;3/[ oo and biharmonic Poisson integrals in the uniform metric

: : .1 . .
in the case where the functions (¢) decrease to zero as t — oo faster that the function 2 which specifies the

order of saturation of the method of linear approximation generated by the operator Bg.
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