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APPROXIMATION OF CONJUGATE DIFFERENTIABLE FUNCTIONS
BY BIHARMONIC POISSON INTEGRALS

K. M. Zhyhallo and Yu. I. Kharkevych UDC 517.5

We determine the exact values of upper bounds of approximations by biharmonic Poisson integrals on
classes of conjugate differentiable functions in uniform and integral metrics.

1. Main Definitions

Let C' be the space of 2m-periodic continuous functions with the norm
[ fle = max | £(2)],
let Lo, be the space of 2m-periodic, measurable, essentially bounded functions with the norm

[ flloo = esstsup\f(t)l,

and let L be the space of 2m-periodic functions summable on a period with the norm

1l = [If1lx Z/!f(t)\dt.

We consider a boundary-value problem (in the unit disk) for the equation
A(Au) =0, 1)

where
02 Lo 1 9?
0 pdp  p? Oa?
is the Laplace operator in polar coordinates.
By B(p; f;z) = u(p,z) we denote a solution of Eq. (1) that satisfies the boundary conditions

du(p,
u(p’x)‘pzl :f(x)’ % =0, —m<z<m, 2)

p=1
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where f(x) is a summable 27-periodic function. Then a solution of the boundary-value problem (1), (2) can be
represented in the form

B(p; f;x) = /ft—i—x{

Function (3) is called the biharmonic Poisson integral of f (see, e.g., [1]). Setting p = e~
biharmonic integral in the form

k
[1+5 (1—p2)] pkcoskt} dt, 0<p<0. (3)

/9 we represent the

Bs(f.z) = %/f(t +2)Ks(B)dt, 6> 0,

where

:%4-53[1—}— ( _2/5>] k0 cos kt

k=1

is the biharmonic Poisson kernel.

Let Wy, where p =1 or p = oo, denote the set of 27-periodic functions that have absolutely continuous
derivatives up to the (r — 1)th order inclusive and let ||f(")(t)||, < 1 if p = 1,00. By W; we denote the class
of functions conjugate to functions from the class W, i.e

W;: f;f(x):—%/f(x—i—t)cot%dt, few, s,

where the integral is understood in the sense of its principal value, i.e.,

/ f(z+1t)cot %dt hm / / (x+t)cot = dt

(see, e.g., [2, p. 22]).
Denote

EM, Bs) = sup||f (z) — Bs (f,2)ll ¢ “)
fen

&M, Bs), = sup||f (¥) — Bs (f,2)|;- 6)
fen

If a function ¢ (0) = g (M; ) such that the exact asymptotic equality

€M, Bs)x =9(6) +0(g(9))
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holds as § — oo is determined in explicit form, then, following Stepanets [3, p. 198], we say that the Kolmogorov—
Nikol’skii problem is solved for the class 91 and operator Bj(f,x) in the metric of the space X.

Approximating properties of the method of approximation by biharmonic Poisson integrals on classes of dif-
ferentiable functions were studied by numerous mathematicians. In 1963, for £ (Wolo, B(p)) o 1.e., for the least
upper bounds of deviations of functions from the class WL from their biharmonic Poisson integrals, Kaniev [4]
established the asymptotic equality (for p—1— )

E(WLBW)e=20-p+2 c=ol-p)

and determined the exact values of the approximating characteristics £ (W), B(p)) -
In 1968, Pych [5] obtained the asymptotic equality
1
)7 p— I—.
L—p

Later, these investigations were continued by Falaleev in [6], where the following complete asymptotic expan-
sion of £ (WL, B(p)) o Was obtained:

€ WaB()o = 2 (1= p)+0 (1= 9

o= H{a-p+a-pfng

& (Waes B(p))

NE

+ (1n2+ %) (1—p)?+ (ak (1—p)*n

11p+ﬁk(1—P)k)}7

e
Il

3

el

A = —,

1 1 1 1
ﬁ’“_%(lnﬂﬁ_zﬁ_(k—2)(k—1)2k—2_ (k—1)2k—1>'

=1

1
In [7], Falaleev and Amanov obtained a complete asymptotic expansion of & (WC}O, Bg) o in terms of both 5

and 1 — p, namely, the following relation holds as § — oo (p — 1 —0):

1— g2 i T (Bondt 1\ 1 21 1-p?
1 o k+1
& Woo Bs)e = — {sz:l(_l) <2k/m el =T Gl B

™

[ Dot G (1 @it 1
><{1n<5+1n7r—i—/t—QZ(—l)+ 2]m2k_/ 2k+2 | 52k (7

T k=1 T

where (t)2r is an even 27-periodic extension of the function ¢(t) =t from [0, 7] to the entire axis. In the same
work, general relations were obtained that enable one to deduce analogous expansions of £ (WZ,; Bs) for any
r € N.
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The aim of the present paper is to determine the exact values of (4) and (5) for 91 = W; and 9 = W;,
r € N \ {1}, in the uniform metric and in the integral metric, respectively.

Let K,, and K,, denote the known Favard—Akhiezer—Krein constants from the theory of the best approxima-
tions, namely,

m(n+1)

400
_;z::() 2m

+1n+1, n=012,...,

- A (=™
K,=— _— N.
™ z_:o @m+ 1t S
Theorem 1. If r = 2I, | € N, then the following equalities hold for every § > 0 :

€ (Wi Bs) o = € (W1, Bs),

r—2

1 1 =R

1 - 1
Ky g — Y ——— Ky _gi—
(20 — 1)1 A 52T Z; (20)!

r—21 52

Il
..
I Mm
I

r—2
1—e 2/ [ & 1 _ 1 21 1
KT—i - _ B K —21—1 <57
T <@-:1 (20 — 1)1 2T Z(zz)! ol

522
=0

where

1/6 tn to

1+e
// /m te dtydty .. dt,
0 0 0

Proof. First, we prove the theorem in the case of the uniform metric

Integrating the Fourier coefficients of the function f r times by parts, we obtain

=1|w

k
o 1— [1 +20 _6—2/5)} G
f(z) = Bs(f,z) /f l‘—|—t 2 o cos(kt—i—%)dt. (6)

Using the last equality, we get

s
ITxr T

£ B)e = — sup / FO0Q, (t:8) dt

s feWr
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where

cos (kt + W) 6> 0. 7

Since f € W2, and Q,(t;8) is odd for r = 21, [ € N, we conclude that

™

. 2 [ _
£ (W, By),, < ;/ 1, (t:6)]dt.
0

Let us verify that
sign Q, (t;0) = +sign sint, r=2I, l€ N. ®)

It is obvious that

@, (0;0) = Q,(m;0) =0, r=2, l€N.

Assume that there exists to € (0, 7) such that Q,.(tp;§) = 0. Then, applying the Rolle theorem r — 2 times, we
establish that, for the function Q, (¢;§), there exists a point t,_5 € (0,7) such that Qy(t,_2;) = 0, which is
impossible because it follows from the remark to Theorem 1.14 in [8, p.297] that Q,(¢;6) > 0, t € (0, 7). Thus,
equality (8) is proved.

Consider a function f such that f(") () = sign (Q, (t;0)), t € [, x]. This function can be continuously
and periodically extended to R and belongs to the class W, [9, pp. 104-106]. Thus, for » = 2I, [ € N, we
have

S 2 T _
0

Therefore,

™

S(W;,Ba)czg/\@@;é)\dt:% /@ (t;6) dt|. ©9)
0

0

According to (9), we get

o1 [1 A 62/(5} ¢—(2h+1)/5

E(WOO;B5)C = ; prd (2k + 1)r+1 : (10)

We rewrite equality (10) in the form



404 K. M. ZHYHALLO AND YU. I. KHARKEVYCH

—(2k+1)/6

. _éoo1 2 _2/5 0o
S(W Wz;) 2k+1r+1 7T kz:(:)Zk‘—Fl

— (2k+1)"
We introduce the following function defined on [0, c0):
4 1 = e (2kt1)/z
pn(z) = ;;(}W’ n>1
This function admits the representation
1/$ o0

1 —tl
// / T e,
1—et

and, in particular,

Indeed, since
14+ et 0 6—(2k+1)t1
1—et £~ 2k +1 ’

we have

o0 [o olNe o} 1 _tl
/...//lnlidtldtg Cdb,_ydt,

tn ts to
A 1/ 0o 00 00 ef(2k:+1)t1
== —————dtdty .. . dt,_1dt
7T// //sz+112 n—1Win
0 tn t3 o k=0
1/z

A R G RE )
/.../Zmdtg...dtn_ldtn

—(2k+1)tn o0 o—(2k+1)/z

4 [ e 41—
=...=— ——dt, = — ——— = pu(x).
X G e e
0 ;

11— 67(2k+1)/6

(11
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Performing certain transformations of the function ¢,,(z), n > 1, namely

1/2700 o0 ‘
2 1+e*1
gon(:n):;// /1111_6 o dty...dt,
0 tn to
1/:1}00 o0 o0 ¢ 1/xtn [e'e] o0 ‘
2 14e™™ 2 14e ™
:;/// /lnl_etldtl...dtn—;// ../lnl_etldtl
0 0 th—1 to 0 0 th—1 to

1
©n() —son1(0)/dt— /%1(t>dt,
0 0
we get
1/x 1/x
1
en(r) = on-1(0) dtl—/san_1 <t_)dt1
0 0 !
l/x 1/$ t1 1/x t1
= ©n 1(0)/dt1 ©n 2(0)//dt1dt2+//(pn 2( >dt1dt2
0 0 0 0 0
n—1 1/1‘ t1 te—1

=...= (—1)’“1gon_k(0)//.../dt1...dtk
0 0 0

n—1 2 1
+(—1) 1;// / ¥1 <t l)dtl---dtnl
0 0

odty,

405
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406
n—1l 1/55 t1 tre—1
=Y (—1)* lwn_k(o)//.../dtl dty,
k=1 00 0
5 Yz ity ) .
—tl1
+(1)"1—//.. /ln1+e —dty ... dty_1dty,
7T — €
0 O 0
ie.,
n—1 k—1
1 1 a1 (n
o) =3 o o) (), 12)
k=1
where
K, n=20-1,
en(0) =< leN.
K,, n=2I

Taking into account the definition of the function ¢, (z) and using equality (11), we obtain

—r 1—e 2/ 1—e 2/
& (Wi, Bs) e = 9r(6) = —5—or1(0) + = ——,1(0).
Using relation (12), we get
r—1
—r —1)k-t 1 n 1—e2/0
E(We,Bs) o = (TSor—k(O)g - 041(5 '+ T%fl(o)
k=1 )
1—e 20 <= ( 1)k_1 (0) + (r—1)
2 — ]C' (pr—k—l 5’6 )
% 7‘;2
1 1 1 - 1
== KT— 7 - - . KT— Sy
; (20 — 1)1 A 52 ; (20)1 " 52
/6 r—2 r—2
1—e 20 1 1 - 1 1 1
Krf 1 o; - . Krf i—1 77
T (z; (20 — 1)1 T H 2T zz; (20)17 "2 1522)

r 1_6_2/5 r—1
IR TN

We have proved the theorem in the case of the uniform metric.
Let us show that £(W; Bs); coincides with the right-hand side of (10), i.e., £(W . ; Bs)c = E(W; Bs)1
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Using equality (6), we obtain

E(W{;Bs)1 = sup —/ /f (t+2)Q, (t;6)dt|dx, r €N, (13)
fewrm

where Q,. (t;0) is defined by (7).
By virtue of (8), the following relation holds for r =2, [ € N:

m 1-— |:1+§(1—€_2/5):|6_k/6

/Z 2 o sin kt dt
0

£ (Wi Bs), < %/‘@ (t;5)‘dt=

o 1— 1|1 + 2k + 1 (1 _ 6—2/5) e—(2k§+l)/5
-2 Z : (14)
B (2k +1)7+1
On the other hand, using the lemma from [10, p. 63], for even r we get
s 1— {1 L2kt (1- e2/5)] e~ (k+1)/0
4 2
E(W] B 1= . 15
(W1 Bs) ”kzzo (2k + 1)1 (1)

Comparing relations (14) and (15) and taking (10) into account, we conclude that the following relation holds
for even r:

gl [1 L2kl (1- 6—2/5)} e~ (Gk+1)/0
—r 2 -
g(Wl;B5>1 = ;Z (2k+1)r+1 :g(WooaB(S)C

Using the last equality, we conclude that the theorem is also true in the case of the integral metric.
Theorem 1 is proved.

Theorem 2. If r =2l + 1, | € N, then the following equalities hold for every § > 0 :

€ (W, Bs) o = € (W1, Bs),

(r—1)/2 1 (r—1)/2 1 . 1
r 7 - —Kr 1
; 2t 52i-1 Z; (20)1 "% g2
+1_6_2/5 -2 o1 _<r—§/2 L
2 B O ) e N ) R 2]
r 1_6_2/6 r—1
+ 8y = 8,

2
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where

2% to

/ /arctan e dty ... dt,.
0 0

Proof. First, we prove the theorem for the uniform metric.
Let r =241, [ € N. As in the proof of Theorem 1, we can show that

>1|hu

E(W i Bs)c = — sup /f ) Q, (t;6)dt

erW’r

~ L / 1) (@ (1:0) = @, (5:9) ) at).

T fewy,

where Q,. (t;0) is defined by (7).
Since f € W2, and Q, (t;0) isevenfor r =2/ + 1, [ € N, we have

EW':Bs)e < /’Qrté Q(g;é)’dt.

Let us prove that
sign (@T (t;6) — Q, (g,é)) = +signcost, r=2l+1, € N. (16)

Assume that

™

— — 4
Qr (t0;5)—Qr (575> =0, toE(O,ﬂ'), t07é§'
Then, according to the Rolle theorem, there exists a point ¢; € (0,7) such that Q (t1;9) = 0, whence

Q,_4 (t1;6) = 0, which, by virtue of (8), is impossible. Equality (16) is proved.
Consider a function f such that

sign (@T (t;9) — Q, (g, 5)) =signcost, t¢€ [—m, .

This function can be continuously and periodically extended to [? and belongs to the class W1 [9, pp. 187, 188].
Thus, for r =21+ 1, | € N, we get

WL Bs)e > /‘Qrté Q(%;é)‘dt,
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and, therefore,

E(W.; Ba)o = 2 / 1 (1:6) = Q, (5:0)|at
0

/2

(@r (t;0) — Q, (g,5>> dt — / (@r (m—t6) — Q, (g,5>> dt

Il
L
o\%

o

3 |

/ (@r (t;0) — Q, (m — ¢; 5)) dt|. 17

Using (17), we obtain the following relation for r =2{ 4+ 1, [ € N:

s 1 [1 N 2k2+ 1 (1 B 6_2/5) } o (2k41)/8
E(Woo; Bs) o, = = kZ_O SV cos (2k + 1) tdt|.
-

Thus, for r =2l 4+ 1, [ € N, we have

4 1 - {1 + @(1 _ 6—2/5)] o~ (2h+1)/8
¢ (We =72 (-1 (2k + 1)r+1 ‘ 18
k=0

:q

We rewrite (18) in the form

_ 4N, pl—e @D/ 9 o~ (-DF
£ — R § R L] S S
(Weo s Z (2k +1)r+t 7'['( ) kzzo 2k +1)"
2 © 1 — e~ (2k+1)/6
Z(1—e2° B 1 e 19
+ (L )kZ::O( T (19)
We introduce the following function defined on [0, c0) :
4 L1 — e kD) -
_;Z 2k + 1)n+1 n=

The function 1), (x) admits the representation

o
/.../arctane_tldtl...dtn,
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and, in particular,

1/x

4
P1(x) = — / arctane” 1 dt;.

™
0

Indeed, since

7(2k+1)t1

oo
e
arctane "t = E (—1)F——,
Pt 2k +1

we have

A~
o\

1/z 0o 00 0o

4 oo k€7(2k‘+1)t1
0 tn tg to k=0
1/x

3

0o 0 5o k€7(2k+1)t2
/.../Z(—l) WdtQ...dtn,ldtn

(2k+1)ty, J 1 — e~ (2k+1)/z

4 e
=~~=;O/Z(%T “Z S ey @)

arctane 'dty ..

>1|4>

1/x t, oo 00
/ .../arctan e tdty...dt,

0 0 th—1 to
o0 o0
/ .. ./arctan e tidty ... dtp.

tn—1 t2

o
\
3\8

1/x 1/x ¢,

SNCYEEN
0 0

0
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By using the recurrence relations
1/z 1/z
Yal) = G (0 /dt—/wm()
we obtain
1/x 1/x
VYn(x) = Pn-1(0 /dtl /T,Z)n 1< )dtl
:wn_l(())/dtl—wn_g(())// tldt2+//1/1n 2( >dt1dt2
0 0 0
n—1 1/33 t1 t—1
=...= (—1)k1¢n_k(0)//.../dt1...dtk
k=1 0 0 0
5 1/x tn—2 q
—pn iz dti...dt,_
+(-1) 7T// /wl(tn_l) 1 1
0 0 0
n—1 1/1 t1 th—1
= ( k 11;Z)n k // /dtl
k=1 0 0
4 1/7) tn to
1)"_1—//.../arctanetldtl...dtn_ldtn,
T
0 0 0
1.€.,
— (_1)]671 1 n—1 n(n)
Un(w) =Y tnk(0)— + (=)™ B, (20)
k=1
where
K,, n=2I
%(0) = le N.

K,, n=20+1,

Taking into account the definition of the function v, (z) and using equality (19), we get

— —e2/0 _ o—2/6
£ (W1, By) o = 00 (0) — +—a—thr 1 (0) et 1(0).

411
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Using relation (20), we obtain

-1
. T -1 k—1 1 - 1— 672/6
£ (Wie B = S i 4(0) g+ 67— 27 4(0)
k=1 '

_2/8 (T2 q\k—1
+ ]. (& ( ( 1) wr—k—l(o)élk o ﬂér—1)>

(r—1)/2

1 1 1 - 1
= Ky a1t — Ky g
; (20 — 1)1 A 52T Z; (20)1 " g2
Lo (D2 L _(r—z?%m L1
2 C (20— D)TTEGNT T e (20T g
T 1_6_2/6 r—1)
+ 8y = 8,

2

i.e., the theorem is proved in the case of the uniform metric.
To prove this theorem in the case of the integral metric, it is necessary to prove the equality &£ (W(;, B(;) c=

& (Wy,Bs),- B
Let us show that £ (W{ ; 35)1 coincides with the right-hand side of equality (18). Using equality (13) and
the Fubini theorem [11, p.331], for r =2+ 1, | € N, we get

£(W/;Bs), = sup 1] /ﬂf““) <w+t)(@ (t:0) - Q, (g;a)>dt do

fewr ™
K

s

< %/\@(ué)@r (5:0)]a

—T

7T/2 T
2 — — /T
0 /2
S P P (1= e 2/ [e~k+1)/5
_ 4 > 2 (2k + 1)tdt
o P (2k + 1)r+1 o8
0 k=
4 1— {1 L2kl (1- 62/5)] e~ (Gk+1)/0
2
_4 1k
o (=1) (2k + 1)r+t @D

k=0
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On the other hand, according to the lemma in [10, p. 63], the following relation holds for odd r:

[e.9]

1 B [1 n 2’9; 1 (1- 6—2/5)] o~ (2h+1)/5

(22)

>1|»>

Z (Qk + 1)7”+1

k=0

Using relations (21), (22), and (18) for r =21+ 1, [ € N, we get

1 B [1 " 2k2+ 1 (1- 6—2/6)]6—(2k+1)/6

5(W1,35 ZE(W;;st)C

=1|u>

Z_: (2k + 1)+t

Theorem 2 is proved.

It should be noted that values (4) and (5) for the classes 91 = W; and N = W{ , respectively, with the

Abel-Poisson integral

1 [ I
Pg(f,.%'):;/f(t+$) §+Ze’k/5coskt dt, 6>0,
k=1

instead of Bj(f,x) were investigated in [12].

10.
11.
12.
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