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APPROXIMATION OF CONJUGATE DIFFERENTIABLE FUNCTIONS
BY THEIR ABEL-POISSON INTEGRALS

K. M. Zhyhallo and Yu. I. Kharkevych UDC 517.5

We obtain the exact values of upper bounds of approximations of classes of periodic conjugate
differentiable functions by their Abel-Poisson integrals in uniform and integral metrics.

Let C be the space of 2r-periodic continuous functions in which the norm is defined by the equality
£l = max| FO),
let L. be the space of 2m-periodic, continuous, measurable, essentially bounded functions with the norm

I/ ll.. = esssup|f@)],

and let L be the space of 2m-periodic functions summable on a period with the norm
2n
£l = Ifly = [ 1f@lde.
0

Let Wpr (=1 and p =0) denote the set of 2r-periodic functions f having absolutely continuous deriv-

atives up to the (» — 1)th order inclusive and such that ” f (r) ) <1, p=1, oo, and let Wpr denote the class of

functions conjugate to functions from the class W, i.e.,
17 t
w’r _— r. 7 _ r
Wy = Af fo) = jf(x+t)ctg5dt,feWp : (1)
-

Further, let A = {ks(k)} denote the set of functions of natural argument dependent on a parameter o
(which varies on a certain set EA C R that has at least one limit point) and such that A5(0) =1 Vo € EA .

Note that if 8 € N, then the numbers Ag(k) =: A, ; are elements of an infinite rectangular matrix A = {kn’ k},
nk=0,1,..., A, o=1, neNU {0}. Using the set {ks(k)}, we associate every function f(x) with the
series

%OxS(O) + ixa(k)(akcos(kx)wk sin(kx)), SeEy,
k=1
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where a,, a;, and by, are the Fourier coefficients of the function f. If, for ks €A, d€E,, this series is the
Fourier series of a certain continuous function, then we denote the latter by Ug(f; x; A), andif 6e NU {0},
then we denote itby U, (f; x; A).

Under the condition that the sequence {Ag(k)} k=0 1ssuch that the series

Ks(t:A) = % + 3 Ag(k) coskr @)
k=1
is the Fourier series of a certain summable function, by analogy with [1, p. 46] one can show that

Up(fixiA) = = [ e +0) Kyta: Ay 3)

-7

Following Stepanets [2, p. 198], we call the problem of finding asymptotic equalities for the quantity

AU Ny = sup £ = Ug(fi 6 A “)
fen

the Kolmogorov—Nikol’skii problem. Here, X is a normed space, J{ < X is a given class of functions, and
Us(f;x; A), d€E,, are operators generated by a certain method Ug(f, A) of summation of Fourier series.

If a function @(8) = @(It; Us(f, A); 8) such that, as 8 — ), where § is the limit point of the set E,, one
has

O Us(F, M)y = 9@) + o(e(d))

is determined in explicit form, then we say that the Kolmogorov —Nikol’skii problem is solved for the class R
and method Us(f, A).

In [3], Nikol’skii established the existence of a close relationship between the quantities %(er ; Un(A)) |
and %(W;; Un(A))C in the case where A = {kn’k}, n=0,1,..., k=0, 1,...,n, is an arbitrary infinite trian-
gular matrix. The investigations of Nikol’skii were continued by Stechkin and Telyakovskii in [4]. The most
complete results for triangular A-methods of summation of Fourier series were obtained by Motornyi in [5].

In connection with operators generated by A-methods defined by the collection A = {XS(k)} of functions

continuous on [0, =) and dependent on a real parameter §, one should mention Pych’s results [7], namely, the
following lemmas:

Lemma 1. [f the function
— 1 —As(k
o, 8) = —Z 1=A5(0) sinkt
-1k

vanishes only at the points t= kmn, k =0, 1, £2, ..., for any d€ E,, then the following equality holds for
any integer r = 1:

EWLUs(N) . = EW5Us(M),.
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Lemma 2. If the function

— - 1 —As(k
0:3) = y

k=1

coskt

has at most one root on the interval (0, ], then the following equality holds for integer r>2:
g ;US(A))C = ¢(W": Us(n)

I

If we set Ag(k) = eikls, 0> 0, in (2), then operators of the type (3) are called Abel—Poisson integrals and
are denoted by F(f, x), i.e.,

T =)
1 1 ~k/8
Pi(f, = — +0)| =+ kt |dt. 5
30 = [ fe )(2 kz_le cos ] (5)
—T =
The quantity 135( f,x) is the conjugate Abel—Poisson integral, i.e,
_ 1 T oo
B(f.x) = = [ fx+0) Y e sinkedr. (6)
T
—T k:]

In the case where Us(f; x; A) = By(f,x) and either W = W, or N = W., quantities of the type (4)
were studied in the uniform metric in [8§—18].
The aim of the present paper is to determine the exact values of the following quantities for every & > 0:

Wi R),. = sup [ f(0) = B(f, )]s @)
FeW.

%(VT/{;P(S)1 = sup | f(x) - By(f, 0| (8)
few’

According to [10], quantity (7) satisfies the following equality for » =1 and any &> 0:

1/8
%(V_Voi;PS)C = - jarctane‘t dt.
0

As usual, we denote by K, and K, the known Favard—Akhiezer—Krein constants from the theory of best

approximations:

0 (_Dm(n +1)

4
E W, I’l=0,1,2,...,
m=0

K =

n
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- 4 o ( l)mn
= — nenN.
n § Qm+ 1)

Theorem 1. If r=21, [ € N, then the following equalities hold for every &> 0:

-2
EWR). = €W R) = f LK EZZL - o) ©)
w3 15 ) 0 1->45), (21 D! r21+18211 pr (2i) r21821 d

where

1

dt1 dt, ...dt,.

/n 5]
()_2 1+e
TRHINEE

Proof. First, we prove the theorem in the case of the uniform metric. Taking (1) and (6) into account, we
get

- . 17 1 -
f(x) - B(f,x) = — ff(t + x)(a cotanz - 2 e K/ sinktJdt.
L k=1
T

Integrating r times by parts, we obtain

_ _ T o . kI3

Foo) - B(fx) = L [roa+xny le—rcos(kt+w)dt.

T ok 2

Therefore,

%(V_VOI;PS)C = = fseuulzr

J SO F gy |,

—T

where

. kI3
F75(t) = Z le—cos(kt+w).
k=1

Since feW. and F .5 isoddfor r=2[, [€ N, we have

(we

ale

5(0|dr.

L
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On the other hand, if sign(F, s(¢)) = *signsint, then the function f such that f(r ) (1) = 51gn (0],
5 7,0

[-m, ], is continuously and periodically extended to R and belongs to the class W/ [6, pp. 104—106]. Thus,
for r=2I, le N, we have

oWR), 2 % | B 50| ar

S —3

whence

%(V_Vo:;%)c = %

E’S(t)|dt_ j 5Dt (10)

S —3a

For r=2I, le N, and t€ [-m, &t], the equality sign(fr’a(t)) = *signsint is established by using the
following arguments:
It is obvious that }7,,5(0) = E,S(n) =0 for r=2/, [ e N. Assuming that E’S(t) =0 for a certain ¢, €

(0, ®) and using the Rolle theorem r— 1 times, one can conclude that, for the function

—k/d

— > 11—
F () = —ZeTcoskt,

k=1

there exist tﬁl_)l, t(2)1 e (0,m), t(l)l # 1%, such that

r—1°
(i) = Rs(n?) = o.

However, this contradicts the fact that, according to relations (1.441.2) and (1.448.2) in [19], the function 17‘1 NG)
can be represented in the form

= 1 2(1 — cost)
Es(t) = —1In , te (0,m).
1.3 2 1-2¢"0 cost + e

It is easy to verify that the equation }_71 5(t) =0 has only one root on the interval (0, 7).

Thus, using (10), we obtain the following relation for r=2/, /e N, and 8> 0:

2kt
)_4°°1—e 4

n S Qk+ 1

We introduce the following function defined on [0, <) :

o~ (2k+D/x

_ 4y
@, (x) = nz

S k+1yT
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This function can be represented in the form

1/x o

2 1+e"
X) = In oty ...ty
¢, (x) = j j j .
5]
in particular,
1/x
2 l+e "
o(x) = = _[ In————dr,.
T 1-¢e
0
Indeed, since
- = o~ kD
1n1+€7t Z ’
| oo 2k+1
we have
1/x oo o0 oo 1/x oo oo
2 4 = ,~2k+D
=N Hln dtldtz iy, = [ Y Sty
0 1, 13t 0 1, t3 t, k=0
1]‘x0f ]3 oo e_(2k+1)tzd .
= - —dat 1 t
T o Gy .. Gl Gy
01 13k=0 2k +1)

-(2k+1)t,

Z e—dtn
k=0 (Zk +1"

4 & | — g @k+Dlx

- —— = X).
Tck:O (2k+1)n+l (pn( )
Performing transformations of the function ¢,(x), n> 1, namely
2T T le
0,(x) = = _[ _[ j ——dt ... dt,
T 01, 1y
1/)Coo oo oo 7t1 llxtn oo oo tl
- E.H.J. J.lnl+e—tldt1 dtn_%J.J. _[ ...jlnHe dr ...dt,
006, n I-e Toon, o ¢

I
S

S
—

=

p—a
O —

S

S

|
Qo
o!—.;
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and using the recurrence relations

1/x 1/x

1
0 = o, [dr— [, [ )ar
0p(X) = @,y ! {tp 1@

we get

1/x 1/x
(X)) = 9,4(0) fdfl - .[(Pn 1( )dfl
0

1/x /x4 1/x 1t
0,-1(0) jdl1 - ¢,2(0) _[ fdfl diy + J. _[(Pn 2( )dtl dt,
0 00 00 fa

Vxty Tk 5 Uxty
- 2(1)"‘% O [ andy + ) E jj ftpl( ]dtl dt,_
In-1

00 0 00 0

/x4 1/xt,

Z(l)klmnk@)H Idfl dfk+<1>”‘2H f

dtl dt,_dt,.

Therefore,

Z (= l)k : n—1_(n)
k=1 k!

where

K, n=20-1,
0,0) = 1§ _ leN.

K n=2I,

n

For r=2I, [ e N, we have

(l)kl

(r)
k! Oy k(o) (XB

WL B). = 0,8) = kzl

rl2 1 1 (r=2)/2

1 - 1 )
- Z (21_ 1); Kr—2i+1 621'—1 - oy
i=1 ’

S Keaigr — 05
=@ o~
Thus, in the case of the uniform metric, equality (9) is true. For p =1, relation (9) follows from Lemma 2
with regard for the fact that the function Q(z;é‘)) = —_1’6(t) has only one root on the interval (0, xt].
Theorem 1 is proved.
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Theorem 2. If r=2l+1, [ € N, then the following equalities hold for every &> 0:
(r=1)/2

YW B) = €W R) = 3

i=1

| | e | "

i g & Gy K B

i=1

(12)

where

1

B(sr) = arctan e " dty ... dt, .

N

/8
0

o
S

Proof. Let us show that relation (12) is true in the case of the uniform metric. Taking into account that

T

[ rPwar = o,

-7

we get
T B ! T B — m
G R), = L sw | [rOOF a0 = L sup | [ 100(Fa0-Fo5))a|.
fEW:; —T nfGWD: T 2

Since f e W, and Fr’s(t) isevenfor r=2/+1, le N, we have

Wl By, < %

P~ (B

O — 33

On the other hand, if

sign(fr’a(t) - frs(g)) = tsign cost,

then the function f such that

100 = sign(F50 - o 2)). re [mml

is continuously and periodically extended to R and belongs to the class W, [6, pp. 187, 188]. Thus, for r=
2[+1, e N, we have
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and, hence,
— 2 = = (T
WL B, = 2 [|Fa0- o §)
0
> /2 /2
= £ F s(t)-F. (EDdt— (f n—t)-F (E))dt
- _[ ( r,B() r,d ) j r,B( ) r,d 2
0 0
’ /2 _ _
== J-(Fr’s(t)—Fr’a(n—t))dt. (13)
0
The equality

sign(l_?,’s(t) - Frs(g)) = tsign cost?

follows from the arguments presented below.
Under the assumption that

F,5(t) - _,,a(g) =0, r=2+1, leN,

one can conclude that, for a certain #y € (0, ), 7y # g, according to the Rolle theorem, there exists 71 € (0, m)

such that Fr})(tl) =0, whence F _ 1.5(f)) =0. However, this contradicts the fact that
sign(f’r_l’és(t)) = tsignsint for r=2[+1, [eN.

Thus, t= g is the unique solution of the equation

F,5(1) - F},S(E) =0
2
on the segment [0,7]. Since

sign(frfs(t)) = tsignsint for r=2[+1, [eN,

the function

is monotone on (0, 7).
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Using relation (13), for r=2/+1, /€ N, we obtain

2k+1
/2 o
E(W., P — cos(2k + Dt dt|.
w4
Thus, for r=21+1, le N, and 6>0, we get
o~(2k+DI8

—, 4 e k1-
EW.. By, = ;go(‘l) TG

We introduce the following function defined on [0, o)

e—(2k+1)/x

S
\Y
—_

L=
Yalr) = o §0 (2k+1)”+1 ’

The function W, (x) admits the representation
4 1/x oo oo
y,(x) = = _[ J jarctane_t‘ dty ...dt,;
0

Iy 5]

in particular,

1/x
Y (x) = E Jarctan e " dr.

Indeed, since

g (2k+l)t]
arctane ! = 2 ,
k=0 2k +1
we have

4 l/x oo oo oo

— I j j Iarctan eV dudt, ... dt, ,dt,

T

0 t, 13ty

oo —Qk+D1,

Dk —and, ...dt,_,dt,
0

Iy 131 k=

95
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1/x o 00 o —2k+1)t
4 Z L e ( 2
= — D) =———dt,...d1,_dt,
I
1/x
4 > 2k, 42 kl o~ (k+D/x
R DS O DN = W,
T 5 ko0 Qk+1)" T2 (2k+1)
We transform the function v, (x), n> 1, as follows:
4 1/x o o
y,(x) = — j J. J.arctaneft' dt ... dt,
n 0 1, 1)
1/x o o o
=2 [ Jareune
= ... | arctane ! dt; ... dt,
T 0 0[”,1 123
4 1/x 1, oo oo
- = J. j J J.arctame*’1 aty ... dt,
T 00 Ih—1 %)
1/x 4 Uxt, o o
= 0 dt — — ... | arctane™ dt, ... dt, .
wﬁoi n!LL i Lty
Further, using the recurrence relations
1/x 1/x |
W = v, = [y (Har
0 0

we get

1/x 1/x
20 =y, 1(0) | dy - e ( )dl
v Vo1 _([ 1 _([\I’ 1 i 1

1/x 1/xt 1/x1
1
V,-1(0) Jdtl - v,20) _[ Idfldtz + _[ J.\Ijn—Z(_)dtl d,
0 00 00 B

1/x tl

—Zew‘wk®jf J@
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1/x1 1
2( Dy, ) [ [ [ dn .,
00 0
1/x 1,

+ (—1)”_l J f Iarctane “dt ...dt,_dt,.

Hence,
(- 1)k ! n-1g(n.
v, (x) = 2 v, (0) — k + (D" By
k=1

where

K, n=2I,

v,(0) = 1 leN.
K n=2+1

Therefore, for r=2[+1, [ € N, we obtain

(" 5 <1>“ ol 4 g®
(W2 By)e = wi(®) = kzl Vi) 5 + B

(r=1/2 1 1 (r=/2 1 B

= —K o — K (r)
E (2l—1)' r—=2i+1 62,_1 E (2)‘ r— 2182, B

Thus, equality (12) is true in the case of the uniform metric. For p = 1, relation (12) follows from Lem-
ma 2.
Theorem 2 is proved.
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