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APPROXIMATION OF FUNCTIONS FROM THE CLASS C ¢’oo BY
POISSON BIHARMONIC OPERATORS IN THE UNIFORM METRIC

Yu. I. Kharkevych and T. V. Zhyhallo UDC 517.5

We obtain asymptotic equalities for upper bounds of approximations of functions from the class cY o
by Poisson biharmonic operators in the uniform metric.

Let L; be the set of functions ¢ defined on the entire real axis R with the finite norm

a+2m

= sup / o(t)ldt,
aER

a

let Lo be the space of functions measurable and essentially bounded on the entire axis with the finite norm

o]l = esssup|p(t)],
teER

and let C' denote the set of functions continuous and defined on the real axis with the finite norm

¢ =l

Stepanets’ (see, e.g., [1, 2]) introduced classes f)g‘ﬁ of functions defined on the entire real axis as follows:
Let # € R and a function v (v) continuous for all v > 0 be such that the transform

1 T O
;/d} cos (Ut+7> dv
0

is summable on the entire number axis. Let ﬁg denote the set of functions f(z) € Ly that can be represented in
the following form for almost all x € R:

f(x)—Ao—i-/ $+t%/w cos(vt—i—%)d dt, (1)
—00 0

where Ag is a certain constant, ¢ € ﬁl, [ € R, and the integral is understood as the limit of integrals over
increasing symmetric intervals.
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If fe [A/g and ¢ € M, M C Ly, then it is assumed that f € I:g‘ﬁ Let CA%/’ (C’g"ﬁ) denote the subset of
continuous functions from ﬁg (f/’é‘ﬁ) and let

Cho={recy:lvle <1}

The function ¢(-) in (1) is called the (v, 5)-derivative of the function f(-) (see, e.g., [3, p. 170]) and is denoted
by £5 ().

Let 9 denote (see [4, p. 93] or [5, p. 159]) the set of positive, continuous, convex downward functions v (v),
v > 1, for which

lim ¢ (v)= 0.

v—00

Subsets My and M of the set N are defined as follows (see, e.g., [5, p. 160]):

93?0:{¢€931:0< §KVt21}

t
n(t) —t

and

t
9)?0:{1/1693?:0<K1§ §K2Vt21},
n(t) —t
where

) =) =07 (500)

and 1~! is the function inverse to 1. Here and in what follows, K and K; denote constants, which, generally
speaking, may be different in different relations.
We extend every function ¢ € 9 to the interval [0, 1) so that the following conditions are satisfied:

(i) the obtained function (denoted, as before, by w(v)) is continuous for all v > 0, ¥(0) = 0;

(i) the derivative v¢’(v) = /(v 4+ 0) has bounded variation on the interval [0,00), and v (v) has the
continuous second derivative on [0, 00) everywhere except the point v = 1;

(iii) ®(v) is increasing and convex downward on [0, 1].

Denote the set of these functions by 2(. Let 2 denote the subset of functions v €  for which
t

[0, -
1/ it <

and let

Ao = {w(v) cApeMe, ve [1,00)}.
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Let A = {)\U (2> } be a collection of functions continuous for all v > 0 and dependent on a real parame-
o

ter 0. We associate every function f € I:g with an expression of the form

Uo(f;x;A)=Ao+/f[’§”(x+t %/w cos(vt+ﬁ—>d dt,
e /

where 1 (v) is a function continuous for all v > 0 and 3 € R. In the case where

Ao (V) = [1 + %j (1 — e_%)} e’’, o¢€(0,00),

we denote the functions U, (f;z;A) by By(f;x):
B, (f; —A+OO¢ +tloow 1— )} t+ 07 . )
o‘(fax)— 0 fﬁ (£U p e o ||le acos v 5
—00 0

An operator B,, o € (0,00), that acts on a function f according to rule (2) is called a Poisson biharmonic
operator. Repeating the arguments used in the proof of Proposition 1.1 in [3, p. 169], we can easily verify that,
under the condition of periodicity of f, the operator B, is the well-known Poisson biharmonic integral (see,
e.g., [6]).

In the present paper, we study the asymptotic behavior (as o — oo) of the quantity

&(CY B )é:f:gg 1£() = Bo(£,3) ©

for arbitrary real 5 and ¢ € 2.

The investigation of structural and asymptotic properties of the classes ﬁz‘ﬁ was begun by Stepanets’ [1, 2]
and continued by his disciples. In particular, asymptotic equalities for the upper bounds of approximations of
functions from the classes C’w 3,00 and I:gl by different linear operators were obtained by Dzimistarishvili [7-9],
Rukasov and Chaichenko [10, 11], Ostrovs’ka [12], Repeta [13], Stepanets’ and Sokolenko [14], Kal’chuk [15],
etc.

In the present paper, we continue our investigation begun in [16]. In particular, we consider here the case

] . o1 .
where the function v(v) that defines the class Cg’ o tends to zero as v — oo faster than the function —, which
? v

defines the order of the saturation of the linear approximation method generated by the operator B,.
We set

T(v) = 1,(v; ) = (1 — [ +v]e” 4)

where the function ¢ € 2 is defined and continuous for all v > 0 and

g _2
’Y:'}’a:_<1_e ")-
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Taking into account relation (4) and using (1) and (2), we obtain

o0

@)= Ba (fia) = vto) [ 15 (a+ L) suton

—00
where 753(t) is the transform of the function 7(v) defined as follows:

1 o0
—/T cos (vt—l—&)dv.
T 2

0

We represent the function 7 (v) in the form 7(v) = ¢(v) + p(v), where

2 o) ¢(o)’
v v ov
p(v) = <1— [1+ vov] 67”—5 —;) 12((0)), v > 0;

1
here, the function v (ov) is convex downward and increasing on the segment [0, —] and ¢(0) = 0.
g

Further, let fi(z) and fy(z) be defined as follows:

e}

+00
filz) = % / f;f (x+1) /m/)(v) cos (vt + %) dvdt,

0

+o00o [ee)
1 pr
fa(z) = = fg’ (z+1) [ v*(v) cos <vt + —> dvdt,

&)

(6)

)

®)

®

where the function (v) is defined and continuous on the interval [0,00) and 3 € R. The following statement is

true:

Theorem 1. If i) € ¢, the function g(v) = v (v) is convex downward for v € [b,o0), b > 1, and

/ 9(v) —dv < 00,
v
1

then the following asymptotic equality holds as o — oo :

fa()

filz) + 5

1
E (C’w : ) = — sup ‘
B,007 2 7
e ¢ o fECg,oc

1
c

(10)

(1D
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Proof. Let ¢g(t) and fig(t) be the following transforms of the functions ¢ and p:

pa(t) = £ /Oosow) cos (wn+ 57 )

1 o0
—/u cOS <vt+@> dv.
T 2

0

Using the integral representation (5), we rewrite (3) in the form

+oo
L .
€<C’§OO; )C:fesgg w(a)/fg (x—i—;) 75(t)dt

,00 —00 C
+oo

v AW ;

= s ulo) [ 7 (o 5 ) Gate) + ol
fecy e g &

773

(12)

(13)

(14)

Let us verify that the transforms ((t) and fi5(t) defined by (12) and (13), respectively, are summable on the

entire number axis.
First, we show the convergence of the integral A(y) defined as follows:

= 70\95(75) dt.

To this end, according to Theorem 1 in [17], it suffices to show the convergence of the integrals

1/2 0o

[olac@l [ -1l

1/2

=]

1
o(1 - 1
/ v) — ¢ —H))’dv.
0

iy

Consider the first integral in (16). Using relation (6), we obtain

dy' (v) = % <¢(01}) + 2 (v + %) o)/ (ov) + (%2 + —) 02¢”(av)> dv.

(15)

(16)

(17)

(18)
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. . . . 1
Since the positive function v (ov) is convex downward and monotonically increasing on the segment [O, —] ,
g

using (18) we get

Taking into account that

Q- )

Taking into account that

1/2 o0 o0 o0
/ oldg!(v)] < / oldg'(v)|  and / v — 1]|de/ (v)] < / oldg ()],
1/o 1/o 1/2 1/o

we estimate the integral

o0

[ vl )

1/o

10 b
on both intervals [—,—) and {—,oo) (for o > 2b).
oo o

Using (18) and taking into account that the function ¢ (v) is convex downward for v > 1, we obtain

b/o b/o

1/o 1/o

b/o
1
+m/v¢(av)dv.

1/c

/ vlde! (v)] < d)(lo_)lj/:a(f + %2> o2y (ow)dv + % / (212 + g) oy (ov)|dv

(19)

(20)

21)

(22)
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Integrating the first and the second integral on the right-hand side of (22) by parts and taking into account that

P(ov) < (1) for v € [l E), we get

)
g O

b/o
K,
v|dy' (v)] < . (23)
[ gl < i
1/o
. . . b .
To estimate integral (21) on the interval | —, 00 | , we use the relations
o
lim vt (v) = 0, (24)
vV—00
lim 34 (v) = 0, (25)
V—00

which are established by the following reasoning: Since the function g(v) = v2w(v) is convex downward for
v > b, b>1, the following cases are possible:

() lim v?¢(v) = 0;

(i) lim v?%(v) = K > 0;

v—00

(iii) Ulingo v2)(v) = oo.

Let

lim v?(v) = K > 0.

V—00

Then there exists 0 < K7 < K such that v?¢(v) > Kj forall v > 1, whence

(o) > 2L,

v

which contradicts the condition of the theorem according to which the function vi)(v) is summable on [1,00).
Now let

lim vt (v) = oo,
V—00

i.e., forany M > 0, one can find N > 0 such that v?y(v) > M forall v > N. Then

T N T

/vw(v)dv = /v¢(v)dv + / UQw(v)dv > Ky + / %dv =Ko+ M(Inz —InN).
N

v
1 1 N

Thus, we again obtain a result that contradicts condition (10). Therefore, relation (24) is true.
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We now show that relation (25) is true. Since the function (1)21/)(1})), is summable on [1,00), we have

v

lim (me(az)),dw =0.

V—00

v/2

Since the function v21)(v) is convex downward for v > b, we conclude that the function — (UQw(v))/ does not
increase for v > b and, therefore,

v
v

/ (— (xzw(w)),> de > — (v - 5) (2vep(v) + v (v)) = —v*p(v) — %U3¢,(”)-

v/2

Using this result and (24), we obtain relation (25).
Using (18) and taking into account the properties of the function ¥ (v) € 9, v > 1, we get

/Oov‘dtp’(v)| < ﬁ /OO (%3 + %2> o2 (ov)dv + % 7 (v2 + g) ol (ov)|dv

b/o b/o b/o
[e.e]

+— /v¢(ov)dv. (26)
/o

Integrating the first and the second integral on the right-hand side of inequality (26) by parts and taking into account
relations (24), (25), and (10), we obtain

[e.e]

b / vlde' (v)] < J;Z?U). 27)
Thus, it follows from (20), (23), and (27) that, as ¢ — oo, we have
1/2 0
O/v|dg0'(v) ~0 (%) 1//2 v — 1]|dg'(v)] = O <%> (28)

Using relation (6) and condition (10), we obtain the following estimate for the first integral in (17):

o 1/o
a5 T (3o s ] (53 s 8
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Let us show that the second integral in (17) satisfies the following estimate as o — oo

/1 00 ey, (1), .
0

To obtain estimate (29), we use the following auxiliary statements:

Definition 1 [17]. Assume that a function 7(v) is defined on [0,00), absolutely continuous, and such that
7(00) = 0. We say that the function 7(v) belongs to &, if the derivative 7'(v) can be extended to the points
where it does not exist so that, for a certain a > 0, the following integrals exist:

a/2 )
/v‘dr'(v)} and / v — al|dr’ (v)|.
0 a/2

Proposition 1 [17]. If 7(v) belongs to &,, then

|m(v)| < H(),
where
a/2 00
) =IO +1r@]+ [ olar' @)+ [ o= aldr'o)]. (30)
0 a/2
We set
P(ov)
T(v) = 15(v) = (1 = As(v , o>1, 3D
(0) = 7o) = (1= 2o(0)) {175
where the function ¢ is defined and continuous for all v > 0.
Lemma 1. Suppose that 7(v) € & and ¢ € Uc. Then the following relation holds as o — o :
h 1 1 i Ao (1 Ao (1
/|T( _U)_T( +U)|d'U:O /| U( _U)_ 0'( +U)|d'l)+H(T) , (32)
v v
0 0
where H(T) has the form (30).
Proof. Using relation (31), we determine the functions 7(1 — v) and 7(1 + v):
Yol —v))
Tl—=v)=0=X(1—-v , v <1, (33)
(1) = (1= 21 =) 7
1
T(1+v) = (1—>\U(1—|—v))¢( (1 +v)) v>—1. (34)
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We represent the integral in (32) in the form of two integrals:

1 1-1/0 1

/ ]T(l—v)—T(l—i-v)\dU: / |7(1 —v) _T(1+v)|dv+ / |T(1_U)_T(1+v)’dv' (35)
v v v

0 0 1-1/c

Let us estimate the first term on the right-hand side of (35). To this end, we add and subtract the following
quantity under the modulus sign in the integrand:

Ao(1 = 0) = A (1 +0).

As a result, we obtain

1-1/o
/ |7(1—v)—7(1 +v)|dv
v
0
1-1/o 1-1/o
</ MAl—m;AA1+wmv+t/Iﬂl—w—fﬂ+@+jA1—W—A41+”Mu (36)
0 0
Since, according to (33) and (34), one has
_ ¥ (o)
Ao(l=v)=1-— Tb(U(l—U))T(l_v) (37)
and
_ ¥(o)
)\0'(1“"0) =1- m7(1+7]), (38)

we obtain the following estimate for the second integral on the right-hand side of relation (36):

1-1/o
/ [T(1—v) —=7(14+v)+ A (1 —v) — As(1 +v)|dv
9 v
i bo) |dv . [ bo) |d
< !‘““‘U”P‘EGHTZS‘E+ ! ol fi- A2 o)

Taking into account that 7(v) belongs to & and using Proposition 1, we get
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e Wo) |dv. [ Wo) |d
0/ ‘7(1”)"11/)(0(1—@) W 0/ 'T(””)"lwa(lm) n
e 0) — v, [ e +v) - (o)
~H(r O’—U—O’U U—H)_Uv.
=H[NO 0/ o —o) Ot 0/ Wit ) G0
Let us show that the following relations hold as ¢ — oo:
1-1/c
L= / |‘Z’((’U(;(;(”1))_;;’Z)’(”)|dv:0(1), (41)
1-1/c
Iy = / W((’l}(;;;(”l)l;;/;(”)’dv:0(1), (42)

where O(1) is uniformly bounded with respect to o.
Further, we use the following statements:

Proposition 2 [5, p. 161]. A function 1 € I belongs to M if and only if the quantity

a(t) = P(t) = (t+0),

satisfies the condition
0<K1§O¢(t)§K2 Vvt > 1.

Proposition 3 [5, p. 175]. For a function ¥ € 9N to belong to My, it is necessary and sufficient that, for an
arbitrary fixed number c > 1, there exist a constant K such that the following inequality holds for all t > 1 :

5(t)
ety =5

Since the function

1—4(0)/P(o(1 —v))

v

1 1
is bounded for all v € [5, 1-— —] , 0 <d < 1— —, taking into account Proposition 2 for ¢ € 91y we get
g g

. 1=9(0)/Y(a(l—v)) ol|)(o)]
Ly v = o) = F

Thus, I1 » = O(1) as 0 — oo.
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Passing to the estimation of the integral /5 ,, we note that

1-1/c

Y(o ( +0))
R — / dv.

Performing the change of variables u = o(1 + v), we obtain

20—1 20
1 Y(o) = (u) 1 Y(o) = (u)
12’0<w(20—1) 0/ u—o du<1/)(20—1)0/ u—o

Applying Lemma 5.5 from [4, p. 97] to the right-hand side of the last inequality, taking into account that

(20 —1) >Y(20), o>1,

and using Proposition 3, we get

Kip(o) _ Ki(o)
SUe -1 S o) S

Combining relations (36) and (39)—(42), we write

IQ,U

1-1/o0 1-1/c
[ ety o [ RO S0 o), oo @)

0 0

Let us estimate the second term on the right-hand side of (35). To this end, we add and subtract the quantity

Yol —v))

%D(l) ()‘U(l_v) _)‘U(1+U))

under the modulus sign in the integrand and take into account that the function v (o(1 —v)) is monotonically

1
decreasing on [1 - —; 1] . As aresult, we get
o

1

/ |7(1—v)—7(1 —l—v)|dv

v
1-1/c

1
1 / o(l—w)) ]/\U(l—’u)—)\g(l—i-v)\dv
~1/o

r1—v) =140+ L= g s+ )

- o0 N
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1
< / \)\J(l—v)—/\g(l—f—v)]dv
v

1 o

1|7 rA\PA T — A\
+ / w(i) dv. (44)
~1/

b (o(1- )
L lr(l—v)—7(14+v)+ ——————= (Ao (1 —v) = Ao (1 +0))
/ “ i
1-1/c
1
ol o) |av ety 2o = 0)ue)]| dv
< [ ra-wi sl ) T e e o) | v
1-1/o 1-1/0
[ w@)de [ | w(e(—v)b(o)|d
H“)O( / ‘“W rl '1‘ S0 (oL 1 v)) ) )
1-1/c 1-1/c
Further, we get
R TR -

-1/

1
Since the function % (o(1 — v)) is monotonically decreasing on the segment [1 - = 1} , we conclude that
g

P(o(1 —w)) <(1) and, furthermore, by virtue of Proposition 3 for o > 1,

Therefore, the function |1 — ZZE;(; (_01()1) )ffg)) 18 bounded on [1 — %; 1] . Thus,
1
1 —v))Y(o)| dv dv I
/ ‘ o1 +v)) 73[(1 / Y_Klnl_l_O(l). 47
~1/o 1-1/c o
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Using relations (45)—(47), we get

1—
Lolr(l—ov)—7(1+v)+ ¥ (U@i(l) v)) Ao (1 —v) = Ao (1 +))
/ ” dv=0(H(1)).
1-1/o
It follows from (44) and (48) that
i 1 1 i Ao (1 A (1
[ Uy, o [ Pello Al g
1-1/c 1-1/c
Combining relations (43) and (49), we obtain equality (32).
The lemma is proved.
For the function ¢ defined by (6), we have
Y(o) v w
)\0— :AO' N :1— :1————
(0) = Molgiv) = 1= J75 () = 1= 5~

It is easy to verify that

Using relations (30) and (6) and estimates (28) and taking into account relations (24), we get

Combining relations (32), (50), and (51), we obtain estimate (29).

(48)

(49)

(50)

(1)

Thus, by virtue of Theorem 1 in [17], the integral A(p) given by (15) is convergent, and, hence, the transform

¢p(t) of the function ¢ defined by (6) is summable on the entire number axis.

The summability of the transform /i3(¢) defined by (13) on the entire real axis follows from the convergence

of the integral

A = [ (o) dr

For the integral A(1) to be convergent, it is necessary and sufficient (see Theorem 1 in [17, p. 24]) that the integrals

1/2

[ vl 7|v — 1]|dg ()],

0 1/2

(52)
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[e’s) 1
’Sm % / ui}v) v, / (1 —v) ;u(l +o)l 4,
0 0

1
be convergent. Let us estimate the first integral in (52) on each of the segments [0, —} , [
g

o > 2b. Denote

,02

2

V—yve TV — — —

av)y=1—e"

By virtue of (7), the following equalities are true:

Using (54), we obtain

These relations and the inequality
—142y—qv<e’, vel0,o00),
yield

(v) <0, i'(v) <0, " (v) <0 for v >0.

783

(53)

(54)

(55)

(56)

(57)

By virtue of inequalities (57) and the fact that the positive function v)(ov) is convex downward and increasing on

1
the segment [0, —} , relation (56) yields
o

(58)
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1
We integrate the first integral in (52) by parts on the segment [O, —]. Since w(0) = 0 and #/(0) = 0
g
(because ¥(0) = 0), taking into account inequality (58) and equalities (55) we get

1/o

1/o
(1Y »@) 1,1\ 1) _/1\¢(1-0)
v ldu (v :—/vdlv: <—>———’<—)—— Bl B Sl 4
O/}M()\ 0 KO =)0 o o) ue) P S )
(@) |, <1>‘ ¢'(1-0) ‘_(1>‘
< LAY 2. (59)
ov@) " \o )| Twe) M \o
Taking into account that
‘ﬂ(v)} < v+ 1212 + U—g }ﬁ'(v)] < 2 + gv + §v2 v>0 (60)
302 o 27 302 o 2 -
and using relation (59), we obtain
1/o
/ Ky
< — .
/v }d/,L (v)‘ S 559(0) (61)
0
. . . 16 ,
Let us estimate the first integral in (52) on the segment [—, —] . Using (56), we get
oo
b/o b/o b/o b/o
[elawwls o [oroiwena+ 22 [o@@ieeai s 7 e eon.
~ (o) ¥(0) ¥(0)
1/o 1/c 1/o 1/o
Taking into account inequalities (60) and the estimate
— 1 2
" (v)] < g—i-?w, v >0,
and integrating by parts, we obtain
b/o
K»
! <. 2
//v}d,u(v)‘_ogw(g) (62)
1/o0

We show that if the function v?1)(v) is convex downward for v > b, b > 1, then

dp/(v) <0, v >

b
— (63)
g

To this end, we set
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According to (54), we have

Since

1
i'v) == (—2 + 27V 4 (14 y)ve ™ +yvie ™ + E),
v o

1 2
i'(v) = (6 —6e7" — (4 +2y)we " — (14 2y)vPe™ — yvie ™ — —U),
v o

. . o 1 .
taking into account the inequalities e™ > 1 — v, v > 0, and v > 1 — — we obtain
o

i’ (v) < 1 —2—1)2 — (142902 —de™ ) <0
v o '

For v > b > 1, according to the conditions of the theorem, the following relations are true:
g(v) >0, g (v) <0, g"(v) > 0.
Then

1 1, 2

u”<v>:(;ﬂ<v>g<av>) = " @)glov) + =i (0)g (o0) + i(v)g"(90) <O for v >

and, hence, inequality (63) holds for all v > b/c and b > 1.
Using inequality (63), relations (55) and (60), and Propositions 2 and 3, we get

1/2 1/2
[ vlaw @] == [
b/o b/o

() (O (1) n (D) <k o
- ol 2 a'ua'u2'ua_1031/1(0)70

Combining relations (61), (62), and (64), we obtain the following estimate for the first integral in (52):

1/2

0/v|d,u’(v)| =0 (1 + %) 7 — 0.

Q|

785

(64)

(65)
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Taking into account relations (24) and (25) and Propositions 2 and 3, one can easily verify that the following
estimate holds for the second integral in (52):

o0

/ v —1||di (v)] = O(1), & — oo, (66)

1/2

1 1 1
Let us estimate the first integral in (53) on each of the intervals [0, —|, [—, 1] , and [—, oo) . Since the
g g g

function fi(v) defined by (54) is nonpositive for v > 0, using the first relation in (55) we get

_\¥(ov)
p(v)| = —n(v)
e 0(0)
Using the inequality
02
e_vgl—er?, v >0, (67)

1
and the fact that the function ) (ov) is increasing for v € [0, —] , we obtain
g

v 2 v

1/o 1/c
p@), 1 v VP v Y(ov)
0/ dv_i/J(U) / (—l—i-e + yve —|——+;> dv

=

<

=

/o
(1)

/( L+v+— —i—(l—'y)v—i—zvz)dv.
(0) 2

0

Using the last relation and the inequalities

1 2 1
147+ =<5= y<1l, 1—vy<—, (68)
o 3o o
we get
/o
/ dv = # 0 — 00 (69)
od(o) )’ '
0

Taking into account inequalities (67) and (68), we obtain
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1 1
/o /o

g o

03¢ /w )dv + [1;( )l/vw( )dv+$§’a)/v2w(v)dv

1

| /\

g

= 1 ’U2 v v
~0 0%(0)1/ b(o)dv |,

Combining relations (69)—(71) and taking into account that

g

/vd}( Vv > K,

1

we obtain the following estimate for the first integral in (53):

O/OOWS)”dv—O #(U)jvzw( dv—i— /w

Let us estimate the second integral in (53). To this end, we use relation (32) for

</ N L (o) B . v
A) =As(p5v) =1 - w(av)'u(v) =[4yvfe™ + o+ -

It is easy to verify that

1 _ 1

X1 -v) -0 let — v 1
/ v) +v)\dv:/"y+ l_z(ev+e—v)+2(1+_>

(& v (&

0

787

(70)

(71)

(72)

. (73)
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Furthermore, relations (30), (7), (65), and (66) yield the following estimate:

1

Comparing (73) and (74) and using (32), we get

1
o) —p(l+v)] 1 B
/ ” dv—0<1+03w(0_)), o — 00. (75)
0

Thus, the transform /i5(t) given by (13) for the function 1 defined by (7) is summable on the entire real axis.
Using (14), we obtain

—+o00

£ (ChuiBs), = sw |vio) [ 53 (mﬁ) (Balt) + iplt)) dt

b
fecy . &

“+00

= s |v) [ 53 (wﬁ) Ba(t)dt]| -+ 0 ($(0)A). 76)

fecy

—00 é
Taking into account relations (6), (8), and (9), we get

+oo

/ 3y (x + 5) Gp(t)dt = 021;(0) <f1(:v) + @) (77)

—00

Using (76) and (77), we obtain

fo()
2

. + O (P(a)A(n)) - (78)

A 1
£ (Cg)oo;Bg) ., = —5 Sup Hfl(x) +
’ C o Aap
fely o

Furthermore, according to formulas (2.14) and (2.15) from [17, p. 25] and relations (72), (74), and (75), the follow-
ing estimate holds for A(u):

1 1 1T
Ap) =0 [1+ 5=+ = VPv)dv + ——— [ vip(v)dv
o) " o w<o>1/ o(o) /
Taking into account that
/v%b(v)dv > K and 031;(0) /v%b(v)dv > K,
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we conclude that

A(p) =0 03;(0) /va(v)dqu %/wﬁ(v)dv . (79)
1 o

Using (78) and (79), we obtain relation (11).
Theorem 1 is proved.

Note that the conditions of Theorem 1 are satisfied, e.g., by the functions ) € 2 that, for v > 1, have the
forms

w@y;%m%v+K%

where
K>0 and o< -1,
and
1 . 1. 1
P(v) = U_T(K +e), Y= Fln (v+K), and ¢(v)= e arctan v,
where

K>0, r>2, and «a€ R.

Theorem 2. If i) € A, the function g(v) = v?(v) is convex downward for v > b > 1, and

o0

/vg(v)dv < 00,

1

then the following asymptotic equality holds as o — oo :

fa()
2

A 1
& (Cgoo;BC,) .= —5 Sup Hfl(x) +
’ C o A
ey

A+O<%>, (80)
C

where the functions fi(x) and fo(x) are defined by (8) and (9), respectively.

Proof. Let 7(v) = ¢(v)+ p(v), where the functions ¢(v) and p(v) are defined by (6) and (7), respectively.
Taking (3) and (5) into account, we obtain relation (14):

+oo
~ t N R
£ (C’goo; Bg)(j = f:gz? (o) / fg <:c + ;) (pp(t) + fp(t)) dt||
,O0 —00 C,

where ¢g(t) and fig(t) are transforms (12) and (13) for the functions ¢ and i, respectively.
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Let us show that the transforms ¢3(t) and fig(t) are summable on the entire real axis. First, we prove the
convergence of the integral A(y) defined by (15). To this end, we divide the interval (—oo,400) into two subsets
(—0,0) and (—o0, 0] U [0, 4+00).

Let us estimate the integral A(y) given by (15) on the interval (—o,c). Using relation (6) and the fact that

. . 1 o
the function 1 (ov) increases for v € |0, —| and taking into account that
g

/vg(v)dv < 00,
1

we get

o

/ 7Og0(v) cos <Ut+ %”) dv| dt
0

—0

< 200/ o(0)|dv = %0/ (”—; 4 g) (o) dv
s 221(#65)1) ://U<v22 N g) i+ 1”2((;)1/7: (“; N g) W(ov)dv < % (81)

Let us estimate integral (15) for [¢| > o. To this end, we consider the integral

/cp(v) cos (vt + %) dv
0

1 1
on the intervals [0; —] and [—;oo]:
g

o

0o /o oo

/4,0(11) cos (Ut + ﬁ;) dv = / + / (v) cos (vt + ﬂ;) dv. (82)
0 0 1/o

According to (6),

#(0) =0, so(l) - 25;’?—1%

1
and, for v € [0, —>,
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Integrating the first integral on the right-hand side of (82) twice by parts, we obtain

1/o
/ (v) cos <vt + %) dv
0
L oByp(l) [t Br\ | 4p(1)+3¢/(1—0) t  pr
~ 2toy)(o) o (E * 7) * 2t201) (o) cos (; * 7)
1/o
- %2 ¢"(v) cos (vt + ﬁ%) dv. (84)

Further, since the function g(v) = v?¢(v) is convex downward and

/vg(v)dv < 00,
1

relations (24) and (25) are true. Integrating the second integral on the right-hand side of (82) twice by parts on the

. 1 o
interval [—, oo> and taking into account that
o

lim p(v) = lim ¢'(v) =0,

we get
i O B 1\ . t  pBr 1 7 , . O
/ ©(v) cos <vt + > dv = —p —~)sin| — + 5 il (v)sin | vt + 5 dv
1/o 1/o

:—Msin<§+@> _%MCOS(E @)

2to2) (o) 2 201 (o) o 2
— %2 / ¢"(v) cos <vt + ﬂg) dv. (85)
1/c

Combining relations (82)—(85), we write
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o

/ o(v) cos <vt + %”) dv

0

1/o
31— 0) — 3y/(1) t Br\ 1 [, B
= 20 0(0) cos ;4—7 —t—2/go(v)cos vt—i—? dv
0
1 T O
5 / ¢"(v) cos (vt + 7) dv.
1/o
This yields
T 8 30/(1 - 0) 3w 7
T —0) —
P < // // )
/gp(v) cos <vt—|— 5 >dv < oo t2 / |o" (v |dv+ /|90 )|dv (86)
0 1/o
Taking relations (19) and (83) into account, we obtain
1/o
1 K
I dv=o [ Z) = — ) 7
[1wian=¢ (3) - ¢ 0= )

0

1
Further, using relation (18) and the fact that the function ¢ (cv), v € [—, oo) , decreases and is convex downward,
(o

we get
b/o . b/o b/o ) ) b/o )
T T (S e (e

It is easy to verify that
b/o b/o

e (R

1/o 1/o

Combining the last relation with inequality (88) and taking into account that

b/o

R N e
¢<a>/ Vlovide < =255y

1/c
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we obtain
b/o b/o
" Ky 30 1 ,
1// |o" (v)|dv < (o) + Ml// <’U+ ;) [0 (ov)| do.

Integrating the integral on the right-hand side of the last inequality by parts, we get

b/o
K
Vi
@ (v)|dv < . (89)
[ o < 220,
1/o
Using relations (18), (24), and (25) and taking into account that v)(v) is decreasing for v € [1,00) and
lim ¥(v) =0,
V—00
we obtain the following estimate:
T K
1
2 / " (v)|dv < Poi(o)

1/o

Hence, using relations (86)—(89), we get
T
/(p(v) cos <Ut + 7) dv| < Zou(o)’
0
Therefore,
2K
o) dt < ———. (90)

lt|zo

Using relations (81) and (90), we obtain the following estimate for the integral A(y) defined by (15):

AP = sy

Thus, the transform ¢3(¢) defined by (12) is summable on the entire number axis.
Further, we verify the summability of the integral

A = [ lis(o)de,
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where [i(t) is transform (13) for the function p(v). To this end, we rewrite the integral A(y) in the form

g

/ / cos(vt+%>dv dt+l / /,u( )cos(vt—k%)dv dt = I + Is. 91
0

I \tIZU 0
We estimate the integral I; as follows:
o| 1/o ol oo
1
Ilg—/ /u()cos(vt+%)dv dt + — / /u()cos(vt+%)dv dt = I3 + 4. (92)
T
-0 |0 -0 |1/o

1
Using the first relations in (55) and (60) and the inequality ¢ (ov) < (1) for v € [O, —] , we obtain the following
o

estimate for the integral I3:

o 1/o 1/c
201!)( ) 0 v P K
—0 0

According to the theorem, we have

/v%ﬂ(v)dv < 0.
1

Using again the first inequality from (60), we obtain the following estimate for the integral I4:

1 (o o0
n<t / / (v dvdt
T

—o0l/o
S (2] U s L [ K
— Ww(a) 354 /UU)( )dv + v /U P(v)dv + 91 vi(v)de | < 031/}(0)‘ (94)
1 1 1

Combining relations (92)—(94), we write

g

/ / ) cos <vt + %) dv| dt = (3)%&((1;), o — 00. 95)
0

—0a

Let us estimate the integral 5. Integrating twice by parts and taking into account that (0) = 0 and p'(0) = 0,
we get
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1/o

[ toros (s )

0
1 1 t 1 1 t 1
= ;,u (;) sin <; + ﬂ—;) + t—Qul <; - O> cos (; + %) — 3 / w (v) cos (vt + ﬁ—;) dv. (96)
0
Taking relations (24) and (25) into account, we obtain

lim p(v) =0 and lim z/'(v) = 0.

V—00 V—00

Then

o0

/ 1(v) cos (m + %”) dv

1/c

1 1\ . [t p« 1 ,/1 t  pBr 1 7 /) ok
= tu(g)sm(g—l— 2> ah (U)COS<O_+ 2) 2 w' (v)cos | vt + 5 dv. (97)
1/o
Combining relations (96) and (97), we get
/,u(v) cos <vt + %) dv
0
1 A (1 t O
w0 (G0) - (2) = (G+%)
1/o ()
L pr L[ pr
2 u(v)cos(vt—i— 2>d t2/,u(v)cos vt + 5 dv
1/o
It follows from the second relation in (55) that
1 1 1 1 "1-0
o o) ¥(o) o) (o)

() ()%
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Therefore,

/u(v) cos (vt + ﬁ%) dv
0

1/

I (%) o (W1 ;8)_ LACO) (g + %) - %2 / - / " (v) cos <vt+ %) dv.  (100)

0 1/c

Tl =

Using relation (100) and taking into account the first inequality in (60), we obtain

7 3 K L L7
i 1 " "
/u(v) cos (vt+ 7) dv| < Poty(o) + 2 / | (v)|dv + 2 / | (v)]dv. (101)
0 0 1/o
Using relations (58) and (98) and the fact that x/(0) = 0, we get
1/o ,
1 (| @) | [1\|ey¥(1-0)
" dv = — [ — |7 = _ MR ———
[ = (5-0) = (2)] e + 7 (7)| 56
0
Taking into account both relations in (60), we obtain
1/o
K,
"()|dv < . (102)
[ e < 22
0
: . . . . . . 10
Consider the second integral on the right-hand side of inequality (101) on each of the intervals |—, —| and
oo
b
[—, oo) . Taking (56) into account and reasoning as in the proof of relation (62), we get
o
b/o
K3
"
w(v)|dv < . (103)
[ e < e
1/o
Using relation (63) and the fact that
lim g/ (v) =0
V—00
and taking into account the second relation in (55) and inequalities (60), we obtain
i i b\ wb) || (b\|olw'®) K
" / — —_ g 4
L vdvz—/duv:u<—>—+‘u<—> < . (104)
[ W =1G) vy TG | o) = i)

b/o b/o
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It follows from (101)—(104) that

/,u(v) COS <Ut + 777-) dU S W
0

Then

1 T 1
I, = - / /u(v) cos (vt—i— %) dv|dt = O <m>, o — 00. (105)
0

[t|>o

Combining relations (91), (95), and (105), we conclude that the integral
(o]
A = [ las(olds
—00

satisfies the following estimate:

1
Alp) =0 ——— |, . 106
0=0(5) 7o (109
Thus, the transform fig(t) defined by (13) is summable on the real axis.
Since the transforms ¢g(t) and fig(t) are summable on the entire number axis, the following relation is true:

—+00

€ (ChuiBr) = s [0le) [ 7 (4 %) @altiar]| +0 (o)),

A
fecﬁ,oo —00 C

Using relations (77) and (106), we obtain the asymptotic equality (80) as o — oc.
Theorem 2 is proved.

Note that the conditions of Theorem 2 are satisfied, e.g., by the functions ) € 2 that, for v > 1, have the
following forms:

w) = P g gy = L e,
where
r>4, K >0, and «a€ R,
and
Y(v) =v"e T
where

a>0, K>0, and r € R.
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