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APPROXIMATION OF (%, 3)-DIFFERENTIABLE FUNCTIONS
BY WEIERSTRASS INTEGRALS

Yu. I. Kharkevych and I. V. Kal’chuk UDC 517.5

We obtain asymptotic equalities for upper bounds of approximations of functions from the classes Cj

and LEJ by Weierstrass integrals.

1. Main Definitions and Auxiliary Statements

Let C be the space of 27-periodic continuous functions with norm || f|lc = max |f(t)], let Lo be the
space of 2m-periodic, measurable, essentially bounded functions with norm || f||o, = esssup } f (t)|, and let L be
t

the space of 2m-periodic functions summable on a period with norm

I£1 = £l = [ |at

In [1], classes of periodic functions were introduced as follows:
Let f(z) € L and let

a = :
S[f] = 70+kz_:1(akcosk;x+bksmkx) (D

be the Fourier series of f.
Further, let (k) be an arbitrary fixed function of natural argument and let 5 be a fixed real number. If the

series
Z ﬁ <ak cos (lm + ?) + by, sin (kx + ?))

k=1

is the Fourier series of a certain summable function ¢, then this function is called the (v, (3)-derivative of f(x)
and is denoted by fg (). The set of all functions f(x) that satisfy this condition is denoted by Lg. The subset

of continuous functions from Lg is denoted by C’g’. If f(z)e LE and H fg(x)Hl < 1, then one says that f(x)
belongs to the class Lgl; if f(x) € Cg’ and Hfg(x)H <1, then f(x) belongs to the class Cgoo.
K o0 b
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For (k) = k=", r > 0, the classes Cg,oo coincide with the classes Wj introduced by Nagy in [2], and
fg (x) = f[(;)(:c) is the (r, #)-derivative in the Weyl-Nagy sense. Furthermore, if 3 =, r € N, then fgp is the
rth-order derivative of the function f, and the classes C’gﬁ ~ are the well-known Sobolev classes W".

Following Stepanets [1], we denote the set of convex-downward sequences (k) for which klirgo P(k) =

by 1. Without loss of generality, we assume that sequences (k) from the set 9t are the restrictions of certain
positive, continuous, convex-downward functions (¢) of continuous argument ¢ > 1 that tend to zero at infinity
to the set of natural numbers. The set of these functions is also denoted by 9%. Thus,

m — {W): B(t) > 0, B(ty) - 20 (“ "2”2) Flta) 20 Yty € [1,00), Jim (1) = 0}.

Let 9 denote the subset of functions ¢(-) from 91 that satisfy the condition

/@dt < 0. 2)
1

Further, we introduce the subset 9ty of the set T by using the following characteristic: Let 1 € 91 and let
n(t) = n(y;t) be the function related to ¢ by the equality

) =n(wst) =" (500))

where 1)~! is the function inverse to 1. We set

Then
Mo={Y eM: 0 < p(¢;t) <K Vt =1},

where K is a constant that may depend on 1.
Let f (z) € L. The quantity

%) 2 ‘
Ws(f,x) = 50 + kZleT ag coskx + b sinkz), 0 >0, 3)

where a; and by are the Fourier coefficients of the function f, is called the Weierstrass integral (see, e.g., [3,
p. 150]).
The present paper is devoted to the investigation of the asymptotic behavior of the quantities

£(ChaiWs) = swp [|f(x) = Wi, )], @

fels o
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and

£ (1503), = swp ) - Wit ©
8,1

as § — oo.

If a function ¢(5) = p(N; ) such that € (NM; W5)y = ¢ (0) +0(¢(d)) as § — oo is found in explicit
form, then, following Stepanets [1, p. 198], we say that the Kolmogorov—Nikol’skii problem is solved for the class
91 and the Weierstrass integral in the metric of the space X.

Note that the Kolmogorov—Nikol’skii problem for Weierstrass integrals on the classes W, W", etc., was
studied by Bausov [4, 5], Bugrov [6], Baskakov [7], and Falaleev [8].

We set

/

/\

Ly ) 1
e

7(u) = 75(u, ) = (6)

where 1 (u) is a function defined and continuous for u > 1. Without loss of generality, we assume that the
function (u) has the continuous second derivative on [1;00).

In the present paper, we denote, generally speaking, different constants by K and K.

Below, we present several definitions and auxiliary statements due to Bausov [5] and Stepanets [1], which are
used in what follows.

Definition 1 [5]. Suppose that a function 7(u) is defined on [0,00), absolutely continuous, and such that
7(00) = 0. One says that the function 7(u) belongs to &, if the derivative 7'(u) can be extended to the points

b o0
where it does not exist so that the integrals / uld7’(u)| and / \u — al|d7’(u)| exist for a certain a > 0.
0 a

2

Theorem 1’ [5, p. 24]. Suppose that T(u) € &, and sin %7‘(0) = 0. Then, for the convergence of the

:l/ /T cos(ut%—ﬁ—)d dt, @)
T 2

—oo |0

integral

it is necessary and sufficient that the integrals

[l [la—w-ra+w)]
0/ el d 0/ - d

be convergent. Moreover, the following estimate is true:

648
2

sin
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where £(A, B) is the function introduced in [9] as follows:

T
§|A|a |B|§|A|7 1, 0<u<a,
|A| arcsin E’ + v B2 - A2, |B|>|A| 0, u=>a,
5 o0
Hr) =IO +1r@] + [ uldr' @] + [ fu - aljar'(w)]. ®)
0 3
If
o0 a
2|y, | Firtly, 4 flrtem=rtara,,
T 2 u 2 U
0 0
then
A(T)—g sinﬂ—ﬂ /Mdu <K /|T(a_u)_7(a+u)‘du+ﬂ(7') ; )
T 2 U U
0 0
if
z sinﬂ—ﬂ / |T(u)|du S i/ ‘T(CL—U) B T(a—'—u)’du’
T 2 u 2 u
0
then
4 [|r(a—u)— T
A(T)——Q/‘T(a Worlat ol | < g ‘sinﬁ—” /‘T(u)‘du—l-H(T) . (10)
T U 2 U
0 0

Theorem 2/ [1, p. 161]. A function 1 € M belongs to My if and only if the quantity

o) = i VO = le+o) 1)

satisfies the condition «o(t) > K >0 Vt > 1.

Theorem 3’ [1, p. 175]. For a function 1 € M to belong to My, it is necessary and sufficient that there
exist a constant K such that the following inequality holds for all t > 1 :

b(t)
ooty =

where c is an arbitrary constant that satisfies the condition ¢ > 1.
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2. Asymptotic Estimates for Upper Bounds of Deviations of Weierstrass Integrals
from Functions of the Classes C’g,oo

We need the following analog of Lemma 1 in [10]:

Lemma 1. [f, for the function 7(u) defined by (6), its transform

[e.o]

78(t) = 7(t,B) = %/T(U) cos (ut + %) du (12)
0

is summable on the entire number axis, then the following equality is true:

& (CYoi W(;)C = $(Vo)A(r) + O | v (V6) I75(t)] dt | (13)

where A(T) is defined by (7).

Theorem 1. Suppose that i € im:) = Mo N M and the function g(u) = up(u) is convex upward or
downward on [b;0), b > 1. Then the following equality holds as 6 — oo :

E(ChoaiWs) = w(VO)A(T) +0 G - —w(f;)) : (14)
where A(T) is defined by (7) and satisfies the following estimate:
2. B Y 1 T 1
T u
A(r) = — [sin =~ m 1/u1/1(u)du—|— m\//g Tdu + 0 (1 + m) . (15)

Proof. We verify whether the conditions of Lemma 1 are satisfied. To this end, we establish the summability
of the transform (12) of the function 7(u), i.e., the convergence of integral (7). Using Theorem 1/, we estimate the
following integrals:

/u ’dT'(u){ , /|u —1] {dT'(u)} , (16)
0 1

u

[e%) 1
sin %ﬂ‘ / —’T(u)|du, / [ —w) = +u)l, (17)
u
0

0
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1 1 1
To estimate the first integral in (16), we divide the segment [0; 5} into the two parts [0; 7} and { Nk 2]

(for 6 > 4b?).
Taking into account that 7”/(u) > 0 on [ ; %] and using the inequality
e <1, ueRr, (18)
we get
B
v w(1) (2 1
1 1
uldr' (u)| = —6_3—1—1—6_3):0( >, 4 — o0. (19)
[l =525 5o/
Now let u € [ ! 1} Settin
u — =
Vo2 :
n(w) = (1 —a?) YO ) 22200, 20)
$(V9) »(V0)
we obtain
1 1 1
2 2 2
/u‘dT’(u)‘ < /u‘dr{(u)‘ —i—/u}dv'é(u)‘ (21)
7 7 7
Let us estimate the first integral on the right-hand side of (21). Since

_ 59" (V/5u) - Vo' (Vu)

(u)=(1-e W) T gy (e 1)
1o = ) (V0 ( ) $(V5)
- - Y (vou)
12 (e —2uZe™ 1 , (22)
< )
taking into account the inequalities
ut 2
e“—l—uQ—IS?, 1—e ™™ <u?
(23)

=
=

h ! 4 f 5. .1 4\/5 441 6 3
1/u|drl(u)| < /u . (\/Su)dujhr(\/g) /u ! (V/Eu)|du + T /u O(Vou)du.
NG V5

S
S
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Integrating the first integral on the right-hand side of the last inequality by parts and using Theorems 2’ and 3’, we
obtain

1 Vs
o 12)
/ 2 WO 18VE [
1/u|d7'1(u)\ S AT T AT / o (VEudu+ /
Vs Vs 7
5
7 7
Here and in what follows, we assume that /(1) = ¢/(1 + 0).
Since the function g(u) = u?¢(u) is bounded on [1;b], we have
1 % 1 /
3 - - 3
75) 1/u Y(Vou)du = I /u Y(u) du
L 1
/ 1

Taking into account that the function g(u) = u?3(u) is convex upward or downward for u > b, we get

éh\;ww

1
wPih(Vou)du < /u?’d)(\/gu)du
%

J
; u2 u)jau = 1 — Q.
: 5\/3¢(\/5)b/ Ylu)du=0 <1+ 51/;(%3))’ ’ 20

Using (25) and (26), we obtain the following relation from (24):

uldr|(u)] = O <1 + m> , 0 — o0. (27)

§|H\m|»~
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Let us estimate the second integral on the right-hand side of (21). Taking into account that, for u > one

€
\/ga

has

pa) |, VI (Vi) sy
(V/3) b(V/3) (v38)

we obtain the following relation for § > 4b°:

b
V3

/ }d7'2 <

1

73

Integrating the first and the second integral on the right-hand side of the last inequality twice and once, respectively,
by parts and taking into account that the function v(u) decreases on [1;00), we obtain

75 (u) = 2

7

/3 7 %
Vou) du+ /u2 fu) du+7/
. e

7 - - 7
Ve o, Ve 7 Vo 16
dry(u)| < ——=u3y' (Vou - 2 (Vo) + /uw
/ il < g7 ()|, = G v,
7 Vs Ve
—0 (#) (28)
(Vo))
Since the function g(u) = u?(u) is convex on [b; o), we have
b/u|d7£(u)| - b/udTg(u) = | (urh() — ma(w) ﬁ _0 <1+ w(l\/g)). (29)
Vs Vs
Thus, it follows from (19), (21), and (27)—(29) that
i 1
dr’ =014 —— d — oo0. 30
O/u}T(u)‘ <+5w(\/5)>’ 50 (30)

1
We estimate the second integral in (16). Taking into account that, according to (6), for © > —= one has

V6

_u2> W(Vou) e VO (Vo) <e_u2 B 2uz€_u2) D (Vou)

W VD) o OP

() = (1~

1
and using the fact that |u — 1| < u, u € [5, oo> , and

2
l—e ¥ < 1, u?e ™ <1, ‘u — 2u3‘ e < S we R, (32)
u
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we get

r " 45 7 / 4 Ooq/’(\/gu)
/ud) (\/gu)du+ ml/w (\/gu)’du—kw(\/g / 2 du. (33)

[e.o] / 5
l/ru—udf < s

Integrating the first integral on the right-hand side of (33) by parts and using Theorems 2’ and 3’, we obtain

|

/|u —1] |d7"(u)‘ =0(1), §— oo. (34)
To estimate the first integral in (17), we divide the interval [0, 00) into the three parts [ ! ] { ! 1]
5 , 00 sy T = | T )
g p NG 73
and [1,00).
1
Let u € {0, %] . Taking into account (6) and the second relation in (23), we get
1 1 1
Vs 1 NG 1 NG
/|T(u)|du: @ﬁ(\/% /(1€u _US /u . (35)
U U
) v(vo) J /
According to (6), for u € [—, 1] we have
Vs
; 1 ; 1 —u
/Mdu— / Y(Vou)du < /| —c _u‘w(\/gu)d
/ u Y(V3) J
Iz Vs
By virtue of the first inequality in (23) and estimates (25) and (26), we get
1 1 ) 1
/T(udu— / Y(Vou)du| < / (Vou)
/ u 2¢(v/9) J
Vs T Vs
e (Vou)du




1068 Yu. I. KHARKEVYCH AND I. V. KAL’CHUK

It follows from the last relations that

u (V3

~—

1
/ |T(u)|du = ! /uw(u)du +0 (1 + ! ) , 0 — o0 (36)
1 1 d)
L

Finally, let u € [1,00). Since

17 Tg)d“_wlﬁj e

v(V5) ) u
we have
[lr@l 1 [
1/ - du_d}(\/g)/ “au+0(1) (37)
Ve
Combining relations (35)-(37), we get
7|T(u)|du: L fuw(u)dw ! 7Mdu+0(1+ ! ) (38)
S T ) ) v(va) L 5U(V3)

Let us estimate the second integral in (17). For the function 7(u) defined by (6), according to Lemma 1 in
[11] the following equality holds for all 1 € 9y

/1\T<1—u>—7<1+u>’du:/l’A(l_u)_A(Hu)'dHO(H(T))a <
) u

u
0

2

where H () is defined by (8) and A(u) = e .
Using the fact that

1 1
) — —(1-u)® _ o—(14u)?
/\/\(1 u) /\(l—i-u)]du:/e ue du = O(1)

0 0

and relations (30), (34), and (39), we obtain

(40)

U

1
0/T(l—u)—7(1+u)ldu_o<1+m>,

Thus, taking into account relations (30), (34), (38), and (40) and using Theorem 1’, we establish that the
transform (12) of the function 7(u) is summable on the entire number axis. Therefore, by virtue of Lemma 1,
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equality (13) is true. Using inequalities (9) and (10) and taking into account (30), (34), (38), and (40), we obtain
relation (15).

Let us estimate the remainder on the right-hand side of (13). We have

(e o]

f4(t) = %/T(u) cos <ut+ —) / / ) cos (ut+ %ﬂ) u. (41

0

Integrating the integrals on the right-hand side of equality (41) twice by parts, we get

7(u) cos (ut + ﬁ;) du =

S

(1 - e—%> V) Gy (it + ﬁl)

B

1 [2e59(1) 1\ Voy'(1) ( 1 ﬂw)
_ 1— 5 I [
: (ﬁwm =) ) Vo2
_ %2 7" (u) cos (Ut + ﬂ2_71'> du. (43)
Substituting (42) and (43) into (41), we obtain
P /T(U) Cos (Ut + %) U= — T2 /7'”(“) cos <ut + %) du — p—s /T”(U) cos (ut + g—ﬂ> U
0 0 1
Vs

1 (1 _ e*%) VO o (%H %) :
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whence
1
- 3 (T T LK
s
< P < " = : 44
ﬂ_/T(’U,)COS (ut+ 5 )du S /+/+/ ks (U)‘d“"‘ﬁ Vo (V3) 44
s o 1 1
V5

1
Taking into account that 7”(u) > 0 on [ ,—] and using inequality (18), we get

Ve
1 1
NG Vs (1) 1
" (u du:/T _%:O<—>, 6 — o0. (45)
0/ Tl Vu(Va) VEo(/5)
1 . . .. . . 1
Let u € —6, 1| . Reasoning as in the estimation of the first integral in (16) on the segment [%, 5] [see
(20)—(29)], we obtain the following estimate:
i 1
" (u du:O(l—l——), § — oo. (46)
/ 7 (u) N
=

Now let u € [1,00). Using equality (31), the first inequality in (32), the inequalities

ue ™ <1, (2u? — 1)6_“2 < %, u€ R,
and Theorem 3/, we get
oo [e.e] oo 1 o0
/|T”(u)|du < /1/)” (Vu) du—l— / \/_u du + /w(\/fu)du =0(1). @7
1 1 1 $(V9) A

Combining relations (45)—(47), we deduce the following result from (44):

17 B
- 7(u) cos (ut + —) du
[

:o<1+m)tl2.

Hence,

/

Ve
[t|> 5"

t)‘dt ~0 (5¢(1\/5) + %) . (48)

It follows from (48) and (13) that equality (14) is true.
Theorem 1 is proved.
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1
It should be noted that, for ¥ (u) = —, r <2, Theorem 1 was proved by Bausov in [5, p. 31].
u

Corollary 1. If the conditions of Theorem 1 are satisfied, sin % # 0, and tlim a(t) = oo, where «(t) is
—0Q
defined by (11), then, as § — oo, the following asymptotic equality is true:

£ (C¢ 'W(;)C = % ‘sin%

6,(”7

7#@ +0 (w(\/S)) . (49)
V3

Proof. 1If 1) € M}, and tlim a(t) = oo, then, for any ¢ > 0, there exists uo > 1 such that (u®y(u))’ > 0
—00
for u > wyg, i.e., the function u®t(u) increases beginning with a certain number wg, and lim u®Y(u) = oo.
U—00

Thus, for sufficiently large § and 0 < € < 2, we have

Vs Vs
1 (V)= (V) / du
du < = 0(1). 50
Using the I’Hospital rule and the fact that tlirgo a(t) = oo, we get
JECPS
. C.) N
g el oY
Taking into account that
1 (Vo) _
LD () B2

and using relations (50) and (51), we deduce (49) from (14) and (15).

Functions of the form ¢ (u) = where o > 1 and K > 0, can serve as an example of functions

1
In®(u+ K)’
satisfying the conditions of Corollary 1.

Corollary 2. Suppose that ) € My, sin %r #£ 0, the function u*y(u) is convex upward or downward for
u>b>1, and

lim u?y(u) = oo, (53)

lim ! /uw(u)du = 00. (54)
1
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Then the following asymptotic equality holds as 6 — oo :

Ve
1

5 /uw(u)du +0 (¢(¢5)) . (55)
1

JCRIDI

ﬁ7oo, 7T

. B
S1n ——
2

Proof. If the function ¢ satisfies conditions (53) and (54), then, using the 1’Hospital rule, we get

fuv(w)
lim 127 = lim xw(x)Q = ! ; = 00.
e () e 2(e) + et @) ad (@)
z—o0 ()
Hence,
. xyi(x)
xlirrgo o) —2. (56)
Taking (51) and (56) into account, we obtain
/@du =0 (v(v9)).
V3

Using the last estimate and relations (14), (15), and (52)—(54), we get (55).

1
Note that the conditions of Corollary 2 are satisfied, e.g., by functions of the form ¢ (u) = — In®(u + K),
u
where K > 0 and o > 0.

Corollary 3. Suppose that ¢ € My, sin %T # 0, the function u*y(u) is convex downward for v > b > 1,

and
lim u?Y(u) = K < oo, (57)
V3
6lim up(u)du = oco. (58)

1
Then the following asymptotic equality holds as 6 — oo :

sin —

£ (i) = 5 [in 5

1 v 1
5 /uw(u)du+0 (5) . (59)
1

Proof. Since the function u?v(u) is convex downward on the interval [b;00), b > 1, and satisfies condition
(57), we conclude that this function is monotonically decreasing for v > b. Thus, for § > b?, we have
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fwdu < /oou21/1(u) du < 59(V/9) f%du =0 <1/J(\/5)) )
NG Ve

U u3
V6 5

W(V6) =0 G) .

Using the last estimates and relations (14), (15), (57), and (58), we get (59).
The functions

Vi) = (K +e) and 0) =

where K > 0 and 0 < o < 1, can serve as examples of functions v satisfying the conditions of Corollary 3.

In particular, for ¥ (u) we derive the following asymptotic equality from (59):

Iné 1
T+O(S>’

Note that, under the conditions of Corollaries 1-3, equalities (49), (55), and (59) give a solution of the
Kolmogorov—Nikol’skii problem for the Weierstrass integrals W on the classes Cg’oo in the uniform metric.

u?’

1.
E(Wg;Wg)C: = sm%r

this asymptotic equality was obtained by Bausov in [5, p. 31].

Let GG be the set of functions ¢ € 91 that satisfy the following condition: For any constant K > 0, there
exists a point ug = ug(K) > 1 such that, for u > g, afunction «(u) of the form (11) satisfies the inequality

a(u)<%<1—§>.

Theorem 2. Suppose that 1) € G, the function g(u) = u?y(u) is convex downward on [b;o0), b > 1,
and

[e.e]

/ud)(u)du < 0. (60)

1

Then the following asymptotic equality holds as 6 — oo :

V5 .
= _1 2 L[ 1
&(CY i), = 7 |7 @)], +o 5\/g/t 1/1(t)dt+5/t1/1(t)dt , (61)
,00 1 \/3

where f(§2) () is the Weyl-Nagy (r, 3)-derivative for r = 2 and (3 = 0.
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Proof. We represent the function 7(u) defined by (6) in the form 7(u) = ¢(u) + p(u), where

5 P(1) 1
e VSRR
p(u) = (62)
u2¢(\/gu) w> S
V(o) Ve
—u? 2 w(l) 1
(1—e" — )1/1(\/3)’ 0§u§—57
p(u) = (63)
—u? 2 ¢(\/3U) 1
G = "2

Let us verify that the transforms ¢g(t) and fi5(t) of the functions ¢(u) and p(u) are summable [see (12)].
We show that the integral

A(p) = % 7 7g0(u) cos (ut + %) du|dt
—o0 |0

is convergent. Using condition (60) and the fact that the function g(u) is convex downward, one can easily verify
that

lim v?¥(u) =0  and lim w4y (u) = 0.
uU—0oQ u— 00
Integrating twice by parts and taking into account that ¢(0) = ¢'(0) = 0 and

lim p(u) = lim ¢'(u) =0,

U—00 U—00
we obtain

%0 75
/cp(u)cos <ut+ ﬁ;) du = /+
0 0

(u) cos (ut + %) du

%‘“\8

7 oo
1 : T )du- s (o )
=3 0/+1/ % (u)cos(ut+ 2>du tz\/&/;(\/g)cos \/3t+ 5 |
7

whence
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/cp(u) cos (ut + %) du| < —
0

1

NG (e’

1 1 K
[+ ] i
* %

1 b
Since the function ¢(u) is convex downward on the intervals {O' —] and [%, oo> and is bounded on the

Vs

b : . .
segment [%, %} , using the last inequality we get
r 8 (7T s 1K
m " LA
/tp(u)cos (ut+7> du| < 2 /+1/+/ |l (u)]du+t2 NG
° R
5 o % o
O/+ b SO du+/ du +t—2m
L 129(1) —209() —0%(h) 1 K
s Vo (V) 1 \/ou(V/9)
%
(20(Vou) + 4Bl (Vou)| + w60 (vbu) ) du
<1 K
— P Vow(Ve)
Then
T B B 1
/ /go(u) cos (ut + 7) du| dt = O <5¢<\/5)> , 0 — o0. (64)
[t|>v5 10

Using relation (62), the fact that the function u21)(u) decreases on [b, 00) and is bounded on [1,b], and inequality
(4.16) in [12, p. 59], we obtain



1076 Yu. I. KHARKEVYCH AND I. V. KAL’CHUK

V3

/ /gp(u) cos (ut—i—%) du|dt
0 10
VTN e e I
= + [ + (u) cos (ut—i——) du|dt
[\
VR ViV 20 /Fu
< Ve + ’gp(u)‘d + Y Y dudt
[*])letec ] ]S
Vs V5
N 73 1 b 1 N aai
2 2 2
< o5 O/u du—i—(w(\/g)l/u ¢(u)du+w(\/3)0/ b/ u?h(Vou)dudt
Ve
p vt
§5w< 0/ / wp(Vou)dudt. (65)

Changing variables and integrating by parts in the last integral in (65), we get

) vt
u?t(Vou)dudt
il
Vs
o it
// du—
LJ’,x 0o
_or 1\/52\/5doolb2b\/3d
_?b(\/g) —;/uw( w) %+/;<%+x) 1/1(+ x):c
% & 4
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(b+2m)

) 7t v
T
= (5udu+—/
»(\/3) G /

1

(b+\/_x) (b+\/3x)da:

<>1|>—k
SWe—0zg
8|

In the case where

lim u*h(Vou)du = K > 0,

r—00

Sk

we have

.
1 NG
lim — / u*h(Vou)du =
5

S

In the case where

T—00

lim / u?h(Vou)du = co
%

using the 1’Hospital rule and the fact that

lim u?y(u) =

U—0o0

b
NG z

Tr—00 I r—00

Vs

b

NG

Since the function 1 (u) decreases for u > 1, we have

\/_ NG
f (VS ., K
<

By virtue of the summability of the function ut)(u) on [1;00), we get

lim 1 u?h(Vou)du = lim i—i—:n 21,[) b+ Vox
/ (G5+2) v

1077

(66)

(67)

(68)

(69)
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Using relations (66)—(70) and (65), we obtain

Zwmmgﬁggwﬁ:oggﬁﬁ,aﬁw

By analogy, one can show that

o\é

é\;o

Using relations (64), (71), and (72), we get

A“">:O<5w<1ﬂ>>’

Let us establish the convergence of the integral

oo | OO

A(p) = % / (1) cos (ut—i— %”) dul dt.

—oo |0

Integrating twice by parts and taking into account that x(0) = ¢/(0) = 0 and

lim p(u) = lim pg'(u) =0,

U—00 U—00

we obtain

Zwm%@HQQMﬁ:oQJﬁQ,gﬁm

(70)

(71)

(72)
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1079
w(u) cos <ut + —> du = + w(u) cos (ut + —) du
[ []

\
Bl —
o\éd._.
_|_
\
t\
=
(@)
o
n
7 N
<
~
+
‘Q
N———
IS
<

(V0) Ve o 2
whence
T 3 1 i 1 K
p(u) cos <ut + —F> du| < = + 1 (u)| du+ 5 —=———~. (73)
/ SR VA e
75
For u € [0, %], we have 1" (u) < 0, Hence,
% % 1 K
O/\u <u>\du=—0/u (u)du = —p <—5>+u(0)ém. (74)
For u > i we get
=5 g
" _ -2 &ﬁ”(\/gu) —u? \/&//(\/Su)
,u(u)—(l e u) (/o) +4u(e 1)71“\/5)
a2 u Y (vou)
42 <e —2ue 1) NGR (75)
whence
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Integrating the first and the second integral on the right-hand side of the last inequality twice and once, respectively,
by parts, we get

Ji " \/&1’,(1) -1 1 61/’(1) _1
1/!# (U)\dug—w(\/g) (e 6+5—1>+ W(l—e 5)
Vi

| e ) (Vi

Using the first and the second inequality from (23), we obtain

/W )| du < 5\f¢( / 2u e~ “2+1) »(Vou)du. (76)
7

5)
; OO

Let us estimate the last integral in inequality (76). To this end, we divide the interval of integration [

S

and [1;00). Using the third inequality from (23), we get

ﬁ”]

. 1
into the two parts | —

1 1 V6
/ 2u e vy 1) D(Vou)du < / - Wl(ml/u%(u)du. (77)
v

Taking into account the inequality 2u%e —ut et 4] < 2, uw € R, we obtain
/2ue“— ) »(Vou)du du<K (78)
1 1

Using relations (76)—(78), we get

K K. e

/ )| du < K+ \/ng 7575 \/(_wi 7 1/ w2y (). (79)

1
NG

Combining relations (73), (74), and (79) and taking into account that

7 v
im ———— [ o2 U im u =
s 5¢g¢(¢3)1/ Y(w)du = Jim 5\fw(\f)5w(\/3)1/d 1, (80)
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we obtain
o 5 . NG
T 2
p(u) cos <ut + —> duldt =0 | —F=—F= /u (u)du | . (81)
/ / 2 5V (V)
[t|>7 10 1
Now consider
a
| oo by V3 1 00
/ /u(u) cos <ut + %) du|dt < / /+ / —I—/ p(u) cos <ut + ﬁ%) du|dt. (82)
0 o 0 o 1 1
75
Using the inequality
e 2 —1<u? wcR, (83)

we get

1
™| V6

" 73
//,u cos<ut+—>d dg//|,u )| dudt
0 0 0

1

-7 f (7wt 1) f“Q (84)
Vo | ’ = oV w(f SVoU(V/3)
] /Iﬂ(u)cos (ut+%>d dt < ]j|#(u)!dudt
s 0L
; Vs

Since ¢ € G, itis easy to verify that the function —pu(u) = (e=*" 4+ u2 — 1)1(v/du) is monotonically decreasing
beginning with a certain value u; > 1.

Since the function —p(u) decreases monotonically on [u;00), u; > 1, is nonnegative, and tends to zero
as u — 00, we can use inequality (4.16) from [12, p. 59]. As a result, we obtain
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Oj ]Ou(u) cos <ut + ”82—7T> du

s

dt = / 170(,u(u))cos (ut + %) du| dt
‘|

[e=]

(— () cos <ut + %) dul dt

B

(—pu(w)) cos (ut + 7) dul dt

5\8

27
T ou L

< [ [uwy s [ [ p) duae
0 1

o
g

_ / / (—pu(w)) dudt. (86)
0 1

Using inequality (83), we get

j u?:(,u(u))dudt< w(i/g) 0/ uj:u2¢(ﬁu)dudt. (87)

Changing variables and integrating by parts, we obtain

r uit3r oo ur+a
1 27 dx
- 0/ 1/ WGt = 2 2/ 1/ uy (Vou) du’
0 . U1+ 1 24ug
- o5 ( zlilgog 1/ u?h(Vou)du + 3 1/ u?(Vou)du
+ 7% (w1 + 56)2¢ (\/g(ul + $)) dw) . (88)
2

In the case where

ul1+x

lim / w?(Vou) du = K > 0,

r—00
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we obtain
ul1+x
1
lim — / u?h(Vou)du = 0.
r—00 U
1
In the case where
ul+x
lim u(Vou) du = oo,
T—00

using the 1’Hospital rule and the fact that

we get

u1+x
1
Jim o [ ee(VBudu = lim (s 226 (Vi + ) =0,
1

Since the function (u) decreases for u > 1, we have

1 24+uq \/3 24uq
3 / ulh(Vou)du < ¢(2 ) / wdu < Kp(V9).
1 1

By virtue of the summability of the function u(u) on [1;00), we have

7% (ur + )% <\/(_S(U1 + x)) do = 7 i) dy
2

0 Y- Viouy
V§(2+u1)
1 7 Vou
=5 / y(y) <1+ . >dy
Yy — Vou
V5 (24u1)
ui %) o]
(1%_??> K

V8(2+u1) Vs

Taking relations (89)—(92) into account, we obtain the following inequality from (88):

T u1+277r fe'e)
1 9 Ky
w(\/g)o/ 1/ w?(Vou)dudt < K + 51/}(\/3)\//Suw(u)du.

—s / y(y)dy < T/W(y)dy-

1083

(89)

(90)

O

92)

(93)
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Using (84), (85), (93), and (80), we deduce the following relation from (82):
s

/Z oy con (425

By analogy, we get

/Z ycon -+ 25

Combining relations (81), (94), and (95), we obtain

Ve 0o
; U2 u)au 1 u u)au
gt — O(Mu}(\/?s)l/ b(u)d +&W5)¢/g ww). 04)

V5 00
71 u2 u)au 71 uplu)au
dt = O(W&b(\fé)l/ ¥(u)d +6w(¢3)/ U( )d). (95)

S

Vo 00
= ; U2 u)au 1 u u)au
A(“)O(Mwﬁ)l/ b(u)d +5W3>é W >d). (96)

By analogy with [1, p. 183], one can show that

o0

f(@) = Ws(f,z) = (V) / fg’ <a: + %) 75(t)dt.
Hence,
£ (Chims) = s W(V3) / 7 (x + %) 25t dt
(S 8,00 o o
- w(x@l 73 (54 =) @al0 + sto)a C
= f:g}”),oo 1/)(\/5)4 fy (w + %) Pa(t)dt ) +0 (1&(\/5)A(M)) . 97)

By analogy with relation (1.1) in [10], one can show that the Fourier series of the function

fola) = 7f;§ (x+ %) pa(t)dt

—00
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has the form

Ny |
S(f,] :Zf akcoskx—l—bksink‘x),
k=1

where ai and by are the Fourier coefficients of the function f. Therefore,

[ RTINS __ 1 o
[ 55 (o+ ) ottt = - 157 ), ©8)

—00

where fé2) (x) is the Weyl-Nagy (r, 3)-derivative for r =2 and § = 0.
Substituting (98) into (97), we get

5(05’,00;14/5)0—— sug Hfo H +0 (p(VB)Am), 5 oo (99)
fely

Substituting (96) into (99), we obtain equality (61).
Theorem 2 is proved.

The functions

1

=—— K>0 1
¥(u) Pt K’ >0, a>1,

and
1 1 1 _
Y(u) = —h*u+K), ¢(u)=—arctanu, ¢P(u)=-—(K+e "), K>0, r>2 «a€R,
u” U u”
can serve as examples of functions for which Theorem 2 is true.

3. Estimates for Upper Bounds of Approximations of Functions on the Classes Lg’l
by Weierstrass Integrals in the Integral Metric

Since the function 7(u) defined by (6) is continuous and (as shown in the proof of Theorem 1) its transform

75(t) of the form (12) is summable, one can prove by analogy with Lemma 2 in [10] that the following equality
holds as 0 — oo:

£ (L53Ws), = v(VOA() + O | w(Vo) / [Fs(t)] dt

V3
[t]> 5"

Comparing this relation with (13), we arrive at the following theorem:



1086 Yu. I. KHARKEVYCH AND I. V. KAL’CHUK

Theorem 3. Suppose that 1 € My = Mo N M and the function g(u) = u*yP(u) is convex upward or
downward on [b;o0), b > 1. Then the following equality holds as 6 — oo :

1
5( @1,W5) = Y(VO)A(r) + O <g+ 75
where A(T) is defined by (7) and satisfies estimate (15).

Using Theorem 3 and reasoning by analogy with the proof of Corollaries 1-3, we establish the following
statements:

Corollary 4. If the conditions of Theorem 1 are satisfied, sin % # 0, and tlim a(t) = oo, where a(t) is
—00
defined by (11), then the following asymptotic equality holds as § — oo :

oo
u

£ (Lgl; W5)1 - Y g + 0 w(\/?S)) . (100)

75

Corollary 5. Suppose that ) € My, sin %T #£ 0, the function u*y(u) is convex upward or downward for
u>b>1, and

) V5

lim w?¥(u) = oo, lim /mﬁudu:oo

umee )= "6—00 G1p(V/3) 1 v

Then the following asymptotic equality holds as § — oo :
2 Br|1 v
. pm
e (Lyyws) =2 |sin T g/uw(u)dwo@(\/ﬁ)). (101)

1

Corollary 6. Suppose that ) € My, silnﬂ?Tr # 0, the function u?y(u) is convex downward on [b; ),
b>1, lim u*p(u) = K < oo, and
uU—=o0

V6
5lim uth(u)du = oo.

1

Then the following asymptotic equality holds as 6 — oo :

sin —

2

1 Ve 1
g/uw(u)du—i—O (5> . (102)
1

Note that, under the conditions of Corollaries 46, equalities (100)—(102) give a solution of the Kolmogorov—
Nikol’skii problem for the Weierstrass integrals s on the classes Lq’; , in the integral metric.
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