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ASYMPTOTICS OF THE VALUES OF APPROXIMATIONS IN THE MEAN FOR
CLASSES OF DIFFERENTIABLE FUNCTIONS BY USING BIHARMONIC
POISSON INTEGRALS

Yu. I. Kharkevych  and  I. V. Kal’chuk UDC 517.5

We obtain complete asymptotic expansions for the exact upper bounds of the approximations of

functions from the classes  W r
1 ,   r ∈ N,  and  W r

1 ,   r N∈ { }\ 1 ,  by their biharmonic Poisson inte-

grals.

Let  C   be the space of  2π-periodic continuous functions with norm specified by the equality  f C  =

max ( )
t

f t ,  let  L∞   be the space of  2π-periodic measurable essentially bounded functions with norm  f ∞  =

ess sup ( )
t

f t ,  and let  L  be the space of  2π-periodic functions summable over a period with the following

norm: 

f L   =  f 1  =  
−
∫
π

π

f t( ) dt.

Further, let  Wp
r   (where  p = 1  or  p = ∞  )  be the set of  2π-periodic functions with absolutely continuous

derivatives up to the  (r – 1) th order, inclusively, such that  f tr
p

( )( )   ≤   1  for  p = 1, ∞  and let  Wp
r   be the

class of functions conjugate to the functions from the class  Wp
r ,  i.e., 

Wp
r   =  f f x f x t

t
dt f Wp

r: ( ) ( ) cot ,= − + ∈










−
∫1

2 2π
π

π

, (1)

where the integral is understood in the sense of its principal value, i.e., 

−
∫ +
π

π

f x t
t

dt( ) cot
2

  =  lim ( ) cot
ε π

ε

ε

π

→ + −

−

∫ ∫+








 +

0 2
f x t

t
dt

(see, e.g., [1, p. 22]).
Also let  f L∈ .  The quantity 
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B f xδ( , )  =  1
π

π

π

δ
−
∫ +f t x K t dt( ) ( ) ,      δ  >  0,    – π  ≤  x  <  π, (2)

is called the biharmonic Poisson integral of the function  f,  where 

K tδ( )  =  1
2

  +  
k

kk e e kt
=

∞
− −∑ + −( )



1

21
2

1 / / cosδ δ (3)

is the biharmonic Poisson kernel (see [2]).
Further, by  Bδ  we denote the periodic extension of the function  B f xδ( , ),  x ∈ −[ ; )π π ,  onto the entire

real axis. 
Denote 

 � �( , )Bδ 1  =  sup ( ) ( , )
f

f x B f x
∈

−
�

δ 1, (4)

� �( , )B Cδ   =  
 
sup ( ) ( , )
f

Cf x B f x
∈

−
�

δ , (5)

where  � ≡ Wp
r   or  � ≡ Wp

r ,  p  =  1, ∞. 
If we know the explicit form of a function  g( )δ  = g( ; )� δ   such that the following exact asymptotic equal-

ity 

� �( , )B Xδ   =  g( )δ  + o g( )δ( ), (6)

holds as  δ  →   ∞,  then, following Stepanets [3, p. 198], we say that the Kolmogorov – Nikol’skii problem is
solved for the indicated class  �  and the operator  B f xδ( , )  in the metric of the space  X. 

A formal series  
n ng=
∞∑ 0

( )δ   is called the complete asymptotic expansion or the complete asymptotics of

the function  f ( )δ   as  δ  →  ∞  if 

gn +1( )δ   =  o gn( )δ( ) (7)

for all  n N∈   and 

f g o g
n

N

n N( ) ( ) ( )δ δ δ= + ( )
=
∑

0

      as   δ → ∞ . (8)

for any natural  N.  We also represent this result in the following brief form:  f ( )δ   ≅   
n ng=
∞∑ 0

( )δ . 

The aim of the present paper is to deduce complete asymptotic expansions of quantities (4) for  � = W r
1 ,

r N∈ ,  and  � = W r
1 ,  r N∈ \ { }1 ,  in powers of  1

δ
  as  δ  →  ∞. 

Theorem 1.  The following asymptotic expansion is true:
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�( ; )W B
k

k k1
1

1
2

12 1 1
δ π δ

ν
δ

≅ +










=

∞

∑       as    δ → ∞ , (9)

where

νk
1   =  ( )

!
− −−

−1
11

1
k

k
k

k
σ ,      k = 2, 3, … , (10)

σ j
j

i

j
j

i
j

j

i

j
i

j
i j

j l

j
i a

j
j

C j i j l=
= −

− − − − − =






−

=

+

=

−

∑ ∑
0 2 1

1
2

2 1
2 1

2
1 21

1

1

0

1
2

, ,

!
( )

( )!
( )!

( ) ( ) , ,       l N∈ , (11)

a
i i j

a i a j i i j
i
j

i
j

j i
j=

= = −

− + − −( ) < < −






−

−
−

1 1 1

2 1 2 1 1 11 1

, , ,

( ) ( ) , ,
      j N∈ . (12)

Proof.  In [4], we established the complete asymptotic expansion 

�( ; )W B C
k

k k∞
=

∞
≅ +







∑1

2

12 1 1
δ π δ

ν
δ

      as     δ → ∞ ,

where  νk
1   is given by relation (10).  In deducing this expansion, we used the following Falaleev’s equality [5,

p. 164]: 

  

�( ; )
( )

/ ( )/

W B

k
e e

k
C

k

k

∞
=

∞
− − +

=
− + + −( )





+∑1

1

2 2 1

2
4

1 1
2 1

2
1

2 1δ

δ δ

π
. (13)

Hence, it is clear that, in order to get relation (9), it suffices to show that    �( ; )W B1
1

1δ   coincides with the

right-hand side of relation (13) or, equivalently, that   �( ; )W B1
1

1δ   =   �( ; )W B C∞
1

δ . 
By using the integral representation (2) and the fact that 

1
π

π

π

δ
−
∫ K t dt( )   =  1,

we find 

f x B f x f x f t x K t dt( ) ( , ) ( ) ( ) ( )− = − +( )
−
∫δ
π

π

δπ
1 . (14)

Since the function  f x f t x K t( ) ( ) ( )− +( ) δ   is measurable on the set  [− ]π π;  × [− ]π π;   and 
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− −
∫ ∫ − +( )
π

π

π

π

δdx f x f t x K t dt( ) ( ) ( )   <  + ∞,

by virtue of the corollary of the Fubini theorem (see, e.g., [6, p. 331]), substituting the right-hand side of equality
(14) in relation (4), in view of the facts that 

−
∫ + − ≤
π

π
f x t f x dx t( ) ( )

for  f W∈ 1
1  and  K tδ( ) ≥ 0  for  δ > 0,  – π ≤ x < π,  we conclude that 

  �( ; )W B1
1

1δ   ≤  2

0
π

π

δ∫ t K t dt( )   =  4
1 1

2 1
2

1

2 10

2 2 1

2π

δ δ

k

kk
e e

k=

∞
− − +

∑
− + + −( )





+

/ ( ) /

( )
. (15)

On the other hand, in view of the lemma from [7, p. 63], we get 

�( ; )W B1
1

1δ   ≥  sup ( ) ( , )
f T

f x B f x dx
∈ −

∫ −
1

π

π

δ   ≥  4
1 1

2 1
2

1

2 10

2 2 1

2π

δ δ

k

kk
e e

k=

∞
− − +

∑
− + + −( )





+

/ ( ) /

( )
, (16)

where  T n  is the class of all trigonometric polynomials  g  such that 

−
∫
π

π

g x dxn( )( )   ≤  1.

By using inequalities (15) and (16) and relation (13), we obtain 

  �( ; )W B1
1

1δ   =  4
1 1

2 1
2

1

2 10

2
2 1

2π

δ δ

k

k
k

e e

k=

∞ − − +

∑
− + + −( )





+

/

( )
  =    �( ; )W B C∞

1
δ . (17)

Theorem 1 is thus proved. 

Theorem 2.  If  r = 2l +1,  l N∈ ,  then the following complete asymptotic expansion is true:

  

�( ; )
!

lnW B
r

r
r

r
k

k
r

k1 1
2

2 1 1 1
δ π δ

δ ν
δ

≅ − +










=

∞

∑       as    δ  →  ∞, (18)

where
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νk
r   =  

( ) ( )
!

( ), ,

!
( ) ln , ,

( ) ( )
!

, , , , ,

− − <

− +








 +









 =

− − > = …
















−

−

=
−

−

∑

1 1
0

1 1 2 1 1

1 1
2 3

1

1

1

k

r k

i

r

k

k r

k
k

k r

r
r

i
k r

k
k

k r k

ϕ

σ

(19)

σ j   is given by relation (11), and

ϕ

π

πn

n

n

K n l

K n l
( )

, ,

˜ , ,
0 2

2 1

2
2

=
= −

=









      l N∈ , (20)

where  Kn  and  K̃n   are the well-known Favard – Akhiezer –Krein constants: 

Kn   =  4 1
2 10

1

1π m

m n

nm=

∞ +

+∑ −
+

( )
( )

( )
,      n  =  0, 1, 2, … ,

K̃n   =  4 1
2 10

1π m

mn

nm=

∞

+∑ −
+

( )
( )

,    n N∈ .

Proof. In [4] (Theorem 2), we established the following complete asymptotic expansion: 

  

�( ; )
!

lnW B
r

r
r

C r
k

k
r

k∞
=

∞
≅ − +







∑δ π δ

δ ν
δ

2 1 1 1

2

,      δ → ∞ ,

where  νk
r   are the coefficients given by relations (19). 

Thus, to prove the theorem, it suffices to show that the equalities 

  �( ; )W Br
1 1δ   =   �( ; )W Br

C∞ δ ,      r  =  2l + 1,      l N∈ , (21)

are true in view of the fact that, according to relation (47) in [4], 

  �( ; )W Br
C∞ δ   =  4

1 1
2 1

2
1

2 10

2 2 1

1π

δ δ

k

k

r

k
e e

k=

∞
− − +

+∑
− + + −( )





+

/ ( ) /

( )
. (22)

As a result of the  r-fold integration of relation (14) by parts, we find 

f x( ) – B f xδ( , )  =  1
π

δ
π

π

−
∫ +f x t Q t dtr

r
( )( ) ( ; ) ,
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where 

Q tr( ; )δ   =  
k

k

r

k e e

k
kt

r

=

∞ − −

∑
− + −( )





+





1

21 1
2

1

2

/ /

cos

δ δ
π

. (23)

Therefore, 

  �( ; )W Br
1 1δ   =  sup ( ) ( ; )( )

f W

r
r

r
f t x Q t dt dx

∈ − −
∫ ∫ +

1

1
π

δ
π

π

π

π
. (24)

For the subsequent evaluation of the quantity   �( ; )W Br
1 1δ ,  we first show that 

sgn ( ; ) sgn sinQ t tr δ = ± ,      r = 2l + 1. (25)

It is clear that, for  r = 2l + 1,  l N∈ ,  we have 

Qr( ; )0 δ   =  Qr( ; )π δ   =  0.

Under the assumption that  Q tr( ; )δ   is equal to zero at a certain additional point  t0  ∈  (0, π  ),  by the Rolle

theorem, one can find points  t1
1( )  ∈ (0, t0 )  and  t1

2( ) ∈ ( t0 , π  )  such that 

′Q tr( ; )( )
1
1 δ   =  ′Q tr( ; )( )

1
2 δ   =  0.

This yields 

Q tr−1 1
1( ; )( ) δ   =  Q tr−1 1

2( ; )( ) δ   =  0

and, hence, there exists a point  t2  ∈ t t1
1

1
2( ) ( ),( )  such that 

Q tr−2 2( ; )δ   =  0,

etc.  Further, we perform the outlined procedure  r – 2  times and, as a result, conclude that there exist points

tr−2
1( )  ∈ (0, tr−1)  and  tr−2

2( )  ∈ ( tr−1, π  )  such that 

Q tr2 2
1
−( )( ) ; δ   =  Q tr2 2

2
−( )( ) ; δ   =  0.

which contradicts the fact that the function  Q t2( ; )δ   is equal to zero at a single point inside the interval  (0; π  ).
Indeed, 

′ = − + + −( )
=

∞

=

∞ −
−

=

∞ −
∑ ∑ ∑Q t

kt
k

e kt
k

e e kt
k k

k

k

k

2
1 1

2

1

1
2

1( ; )
sin sin

sin
/

/δ
δ

δ δ .
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By using relations (1.441.1), (1.447.1), and (1.448.1) from [8], conclude that 

′ = − +
−

+
−( )

− +( )
−

−

− −

− −Q t
t e t

e t

e e t

e t e
2

1

1

2 1

1 22 1

1

2 1 2
( ; ) arctan

sin

cos

sin

cos

/

/

/ /

/ /δ π δ

δ

δ δ

δ δ .

Further, we get 

′′ =
−( ) −( )

− +( )
− −

− −
Q t

e e t

e t e
2

2 2 1

1 2 2

1 1

2 1 2
( ; )

cos

cos

/ /

/ /
δ

δ δ

δ δ

and it is easy to see that  ′′Q t2( ; )δ   >  0,  t ∈( ; )0 π .  Thus,  ′Q t2( ; )δ   increases on  ( ; )0 π .  Moreover, since

′Q2 0( ; )δ   = − π
2

  and  ′Q2( ; )π δ  = 0,  we have  ′Q t2( ; )δ  < 0  on  ( ; )0 π .  Therefore,  Q t2( ; )δ   decreases on  ( ; )0 π

and, in view of the fact that  Q2 0( ; )δ   >  0  and  Q2( ; )π δ   <  0,  we conclude that the function  Q t2( ; )δ   is equal
to zero at a single point of the interval  ( ; )0 π . 

Equality (25) is proved.  Thus, by using relation (24) with  r  =  2l + 1,  l N∈ ,  we obtain 

�( ; )W Br
1 1δ   ≤  1

π
δ

π

π

−
∫ Q t dtr( ; )  =  2

1 1
2

1

0 1

2

π

π δ δ

∫ ∑
=

∞ − −− + −( )[ ]
k

k

r

k e e

k
kt dt

/ /

sin

=  4
1 1

2 1
2

1

2 10

2
2 1

1π

δ δ

k

k

r

k
e e

k=

∞ − − +

+∑
− + + −( )





+

/

( )
. (26)

On the other hand, in view of the lemma from [7, p. 63], for odd  r,  we get 

 �( ; )W Br
1 1δ   ≥  sup ( ) ( , )

f T r
f x B f x dx

∈ −
∫ −
π

π

δ   ≥  4
1 1

2 1
2

1

2 10

2
2 1

1π

δ δ

k

k

r

k
e e

k=

∞ − − +

+∑
− + + −( )





+

/

( )
. (27)

Comparing relations (26) and (27), we conclude that 

  �( ; )W Br
1 1δ   =  4

1 1
2 1

2
1

2 10

2
2 1

1π

δ δ

k

k

r

k
e e

k=

∞ − − +

+∑
− + + −( )





+

/

( )
.

By using relation (22), we arrive at relation (21) and, hence, at relation (18). 
Theorem 2 is thus proved.

Theorem 3.  If  r = 2l,  l N∈ ,  then the following complete asymptotic expansion is true as  δ → ∞: 
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�( ; )W Br

k
k
r

k1 1
2

4 1
δ π

η
δ

≅
=

∞

∑ , (28)

where

ηk
r   =  

( ) ( )
!

( ), ,

!
, ,

( )
!

, , , , ,

− − <

− =

− > = …














−

−

−

1 1
0

1
4

1
2 3

1k

r k

k r

k
k

k r

r
r

k r

k
k

k r k

ψ

π

τ

(29)

τ j
j i

j i
i
j

j l

a j l
=

=

− = −





 =
− +∑

0 2

1
2

1 2 1
1

1 1

, ,

( ) , ,
      l N∈ , (30)

the coefficients  ai
j   are given by relation (12), and

ψ
π

πn

n

n

K n l

K n l
( )

˜ , ,

, ,
0 4

2 1

4
2

=
= −

=






      l N∈ . (31)

Proof.  By virtue of Theorem 3 in [4], the following complete asymptotic expansion is true: 

  

�( ; )W Br
C

k
k
r

k∞
=

∞
≅ ∑δ π

η
δ

4 1

1

      as    δ → ∞,

where the coefficients  ηk
r   are given by relation (29).  According to relation (50) in [4], we also have 

  

�( ; ) ( )
( )

/

W B

k
e e

k
r

C
k

k

k

r∞
=

∞ − − +

+= −
− + + −( )





+∑δ

δ δ

π
4 1

1 1
2 1

2
1

2 10

2
2 1

1 . (32)

Therefore, to prove the theorem, it suffices to show that 

  �( ; )W Br
1 1δ   =    �( ; )W Br

C∞ δ ,      r = 2l,      l N∈ ,

or, equivalently, that    �( ; )W Br
1 1δ   coincides with right-hand side of relation (32). 

As shown in the proof of Theorem 1, equality (24) is true.  Let us show that 

sgn ( ; ) ; sgn cosQ t Q tr rδ π δ− 









 = ±

2
,       r = 2l,     l N∈ . (33)
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For  r = 2,  the validity of equality (33) follows from the fact the function  Q t2( ; )δ   possesses a single zero
on  ( ; )0 π .

We now show that equality (33) is true for  r = 2l + 2,  l N∈ .  Assume that

Q tr( ; )0 δ   –  Qr
π δ
2

;



   =  0,      t0 0∈( , )π ,      t0 2

≠ π . 

Then, according to the Rolle theorem, there exists a point  t1 0∈( , )π   such that 

′Q tr( ; )1 δ   =  0,

whence it follows that 

Q tr−1 1( ; )δ   =  0,

which is impossible in view of relation (25).  Equality (33) is proved.  Thus, by using relation (24) and the corol-
lary of the Fubini theorem [5, p. 331] whose conditions are clearly satisfied for  r = 2l,  l N∈ ,  we find 

�( ; )W Br
1 1δ   =  sup ( ) ( ; ) ;( )

f W

r
r r

r
f x t Q t Q dt dx

∈ − −
∫ ∫ + − 











1

1
2π

δ π δ
π

π

π

π

≤  1
2π

δ π δ
π

π

−
∫ − 



Q t Q dtr r( ; ) ;   =  2

2
0

2

2
π

δ π δ
π

π

π/

/

( ; ) ;∫ ∫−








 − 









Q t Q dtr r

=  4
1 1

2 1
2

1

2 1
2 1

0

2

0

2
2 1

1π

π δ δ/ /

( )
cos( )∫ ∑

=

∞ − − +

+

− + + −( )





+
+

k

k

r

k
e e

k
k t dt

=  4 1
1 1

2 1
2

1

2 10

2
2 1

1π

δ δ

k

k

k

r

k
e e

k=

∞ − − +

+∑ −
− + + −( )





+
( )

( )

/

. (34)

On the other hand, by virtue of the lemma in [7, p. 63], for even  r,  we have 

 �( ; )W Br
1 1δ   ≥  sup ( ) ( , )

f T r
f x B f x dx

∈ −
∫ −
π

π

δ   ≥  4 1
1 1

2 1
2

1

2 10

2
2 1

1π

δ δ

k

k

k

r

k
e e

k=

∞ − − +

+∑ −
− + + −( )





+
( )

( )

/

. (35)

Thus, in view of relations (34), (35), and (32), we arrive at the equality 
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  �( ; )W Br
1 1δ   =  4 1

1 1
2 1

2
1

2 10

2
2 1

1π

δ δ

k

k

k

r

k
e e

k=

∞ − − +

+∑ −
− + + −( )





+
( )

( )

/

  =    �( ; )W Br
C∞ δ .

Theorem 3 is proved. 

The complete asymptotic expansions for approximations from the classes  W r
1   are presented in Theorems 4

and 5. 

Theorem 4.  If  r = 2l,  l N∈ ,  then the following complete asymptotic expansion is true as  δ → ∞: 

  

�( ; )
!

lnW B
r

r
r

r
k

k
r

r1 1
2

2 1 1 1
δ π δ

δ ν
δ

≅ − +





=

∞

∑ , (36)

where  νk
r  = νk

r   for  k ≠ r,  νr
r  = – νr

r   and the coefficients  νk
r ,  k = 2, 3, … ,  are given by relation (19).

Proof.  The following complete asymptotic expansion is obtained in Theorem 4 from [4]:

�( ; )
!

lnW B
r

r
r

C r
k

k
r

r∞
=

∞
≅ − +







∑δ π δ

δ ν
δ

2 1 1 1

2

,      δ  →  ∞.

As earlier, to prove this theorem, it suffices to show that 

 �( ; )W Br
C∞ δ   =    �( ; )W Br

1 1δ ,       r = 2l,     l N∈ ,

provided that the equality 

  �( ; )W Br
C∞ δ   =  4

1 1
2 1

2
1

2 10

2
2 1

1π

δ δ

k

k

r

k
e e

k=

∞ − − +

+∑
− + + −( )





+

/

( )
(37)

holds for    �( ; )W Br
C∞ δ ,  r = 2l,  l N∈   (see [4, p. 23]). 

By using the integral representation (1) and the fact that 

B f xδ( , )  =  B f xδ( , )  =  − + + −( )





− =

∞
− −∫ ∑1 1

2
1

1

2

π π

π
δ δf t x k e e kt dt

k

k( ) sin/ / ,

for  f W r∈ ,  r N∈ \ {}1 ,  and integrating by parts  r  times, we get 

  �( ; )W Br
1 1δ   =  1

π
δ

π

π

π

π
sup ( ) ( ; )( )

f W

r
r

r
f t x Q t dt dx

∈ − −
∫ ∫ + , (38)
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where 

Q tr( ; )δ   =  
k

k

r

k e e

k
kt

r

=

∞ − −

∑
− + −( )



 + +





1

21 1
2

1 1
2

/ /

cos
( )

δ δ
π

,      δ > 0.

We now show that

sgn ( ; ) sgn sinQ t tr δ = ± ,      r = 2l,     l N∈ . (39)

Clearly, 

Q Qr r( ; ) ( ; )0 0δ π δ= = ,      r = 2l,      l N∈ .

We assume that 

Q tr( ; )δ   =  0

for some additional  t0 0∈( , )π .  By applying the Rolle theorem  r – 2  times, we conclude that, for the function

Q t2( ; )δ ,  there exists  tr− ∈2 0( , )π   such that 

Q tr2 2( ; )− δ   =  0,

which is impossible because, by virtue of the remark to Theorem 1.14 in [9, p. 297], 

Q t2( ; )δ   >  0,    t ∈( , )0 π .

Therefore, equality (39) is true. 
Hence, it follows from relation (38) with  r = 2l,  l N∈ ,  that 

 �( ; )W Br
1 1δ   ≤  1

π
δ

π

π

−
∫ Q t dtr( ;, )  =  2

1 1
2

1

0 1

2

π

π δ δ

∫ ∑
=

∞ − −− + −( )





k

k

r

k e e

k
kt dt

/ /

sin

=  4
1 1

2 1
2

1

2 10

2
2 1

1π

δ δ

k

k

r

k
e e

k=

∞ − − +

+∑
− + + −( )





+

/

( )
. (40)

On the other hand, by using the lemma from [7, p. 63], for even  r,  we obtain 

  �( ; )W Br
1 1δ   ≥  4

1 1
2 1

2
1

2 10

2
2 1

1π

δ δ

k

k

r

k
e e

k=

∞ − − +

+∑
− + + −( )





+

/

( )
. (41)
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Comparing relations (40) and (41), in view of equality (37), we find 

  �( ; )W Br
1 1δ   =  4

1 1
2 1

2
1

2 10

2
2 1

1π

δ δ

k

k

r

k
e e

k=

∞ − − +

+∑
− + + −( )





+

/

( )
  =   �( ; )W Br

C∞ δ .

Theorem 4 is thus proved. 

Theorem 5.  If  r = 2l +1,  l N∈ ,  then the following complete asymptotic expansion is true as  δ → ∞: 

  

�( ; )W Br

k
k
r

k1 1
2

4 1
δ π

η
δ

≅
=

∞

∑ , (42)

where  ηk
r  = ηk

r   for  k ≠ r,  ηr
r  = – ηr

r ,  and the coefficients  ηk
r ,  k = 2, 3, … ,  are given by equality (29).

Proof.  By virtue virtue of Theorem 5 in [4], we have the following complete asymptotic expansion: 

  

�( ; )W Br
C

k
k
r

k∞
=

∞
≅ ∑δ π

η
δ

4 1

2

      as    δ → ∞.

Therefore, to prove the theorem, it suffices to check the equality 

�( ; )W Br
1 1δ   =  �( ; )W Br

C∞ δ ,      r = 2l + 1,      l N∈ , (43)

by using the fact that, according to relation (57) in [4], we have 

  �( ; )W Br
C∞ δ   =  4 1

1 1
2 1

2
1

2 10

2
2 1

1π

δ δ

k

k

k

r

k
e e

k=

∞ − − +

+∑ −
− + + −( )





+
( )

( )

/

. (44)

As shown in the proof of Theorem 4, equality (38) is true.  We now demonstrate that 

sgn ( ; ) ; sgn cosQ t Q tr rδ π δ− ( )( ) = ±2 ,      r = 2l + 1,    l N∈ . (45)

To do this, we assume that 

Q t Qr r( ; ) ;0 2δ π δ− ( )  =  0,      t0 0∈( , )π ,      t0 2
≠ π .

Thus, according to the Rolle theorem, there exists a point  t1 0∈( , )π   such that 

′ =Q tr( ; )1 0δ ,
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whence it follows that 

Q tr− =1 1 0( ; )δ ,

However, by virtue of relation (39), this is impossible.  Equality (45) is proved.  Thus, by using relation (38) and

the corollary of the Fubini theorem [6, p. 331], for  r = 2l + 1,  l ∈ N,  we find 

  �( ; )W Br
1 1δ  =  sup ( ) ( ; ) ;( )

f W

r
r r

r
f x t Q t Q dt dx

∈ − −
∫ ∫ + − 











1

1
2π

δ π δ
π

π

π

π

≤  1
2π

δ π δ
π

π

−
∫ − 



Q t Q dtr r( ; ) ;   =  2

2
0

2

2
π

δ π δ
π

π

π/

/

( ; ) ;∫ ∫−








 − 









Q t Q dtr r

=  4
1 1

2 1
2

1

2 1
2 1

0

2

0

2
2 1

1π

π δ δ/ /

( )
cos( )∫ ∑

=

∞ − − +

+

− + + −( )





+
+

k

k

r

k
e e

k
k t dt

=  4 1
1 1

2 1
2

1

2 10

2
2 1

1π

δ δ

k

k

k

r

k
e e

k=

∞ − − +

+∑ −
− + + −( )





+
( )

( )

/

. (46)

On the other hand, according to the lemma from [7, p. 63], for odd  r,  we have 

�( ; )W Br
1 1δ   ≥  4 1

1 1
2 1

2
1

2 10

2
2 1

1π

δ δ

k

k

k

r

k
e e

k=

∞ − − +

+∑ −
− + + −( )





+
( )

( )

/

. (47)

By using relations (46), (47), and (44), we arrive at the equality 

 �( ; )W Br
1 1δ   =  4 1

1 1
2 1

2
1

2 10

2
2 1

1π

δ δ

k

k

k

r

k
e e

k=

∞ − − +

+∑ −
− + + −( )





+
( )

( )

/

  =   �( ; )W Br
C∞ δ .

Theorem 5 is proved. 
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