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APPROXIMATION OF DIFFERENTIABLE PERIODIC FUNCTIONS
BY THEIR BIHARMONIC POISSON INTEGRALS

K. M. Zhyhallo and Yu. I. Kharkevych UDC 517.5

We determine the exact values and asymptotic decompositions of upper bounds of approxima-
tions by biharmonic Poisson integrals on classes of periodic differentiable functions.

Let f be a 2n-periodic function summable on [-7, ]. The function

Y oo
Po(f,x) = lIf(t+x){%+Z[l+§(1—p2):|pkcoskt}dt, 0<p<l, —m<x<m,
T n k=1

is called the biharmonic Poisson integral of the function f.
Let W', re N, be the set of 2n-periodic functions having absolutely continuous derivatives up to the

(r— 1)th order inclusive and such that esssup | f ’(x)| <1, andlet W" be the class of functions conjugate to
xX€R

functions from the class W', i.e.,

W' o= {f:f(x):z—i J.f(x+t)ctgédt, feWr}. (1)

Denote

€O Ppc = swplf0 = B(f e 0=p <. @)

where ||f]|¢ = rtnealg(|f(t)|.

If a function g(p)=g(It; p) such that

E(N,Py)c = g(p) +o(g(p)) as p—1-

has been found in explicit form, then, following Stepanets [1, pp. 67—68], we say that the Kolmogorov—
Nikol’skii problem is solved for the given class Y and approximating aggregate Py.

A formal series Zgn(p) is called (see, e.g., [2, p.21]) an asymptotic decomposition of a function f(p)

n=0
as p — 1- if, for all n, we have

| gs1(P)| = o(|g.(P)])
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and, for any natural N,
N
fP) = Y g +olgy@). p—1-.
n=0
We briefly write this fact as follows:
i) = Ygp.
n=0

Quantities (2) and their analogs with the harmonic Poisson integral

Ay(f,x) = %J‘f(htx){% + Zz;lpk coskt}dt

1463

instead of Pp (f, x) were studied by Timan [3], Sz.-Nagy [4], Kaniev [5], Shtark [6], Zhyhallo and Kharkevych

[7-9], Falaleev [10], etc.

The aim of the present work is to determine the exact value of quantity (2) for Ji= W', re N \{1}, and

find its asymptotic decomposition for 9t = W" and = W', re N\{1}.

Theorem 1. Forany le N and 0<p <1, the following equalities are true:

l -1
W 1 2i-1 1 Lz 2i 1
W R) =Y —— Ky pan®* ==Y ——Kyy_;yIn*¥ =
( p)C = 2i-1)! 2(1-i)+1 p =20 2(1-i) P

i i

= 1 11 1 = 2 1
e(wHl p) = K 212y K, . In¥ =
( P)(; 2 (2i — 1)! 2(l-0)+2 gf (2i)! 2(1-i)+1 0

+1—p2 i (- K _1n2i1+521+1_
2 & @i-n T Fap T el P

where K, and kn are the Akhiezer—Krein—Favard constants:

o0 m(n+1) _ - v
=ﬂ2 D -0, K =2y G0
T =0 2Cm+1) T gz Cm+1)"

ne N.
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In the proof of this theorem, we follow the scheme of the proof of Theorems 1 and 2 in [9].
Taking into account the integral representation (1) and the fact that

Fo) = P _ 1] S IR
P(f.0) = B(f.¢) = n_jnf(z+x)kz:1[1+2(1 p )]p sin ktdt

for fe W', re N\{1}, and integrating r times by parts, we get

W' B). = % sup Tﬂ”(rﬁ,(p, nat|, )
few'| Zn
where
k NI
17,(p,t) = g 1_[1-’-212_[3 )]P COS(kl+%), O0<p<l.
If we prove that, for / € N, the equalities
sign \721(p, t) = tsignsint (6)
and
su1( 9.0~ ) = sgncn "
are true, then relation (5) will yield
_ 4o krl_[l+2k+1(l_p2)]p2k+1
WL R). = — gg,(_l) Qk+ 1) ®

To prove (6) and (7), we first show that

_ oo 1—|:1+k(1—p2):|pk
Vo(p, 1) = ZCk sinkt >0, ¢;:= 2k2
k=1

for te (0,m) and 0<p < 1. For this purpose, we analyze the sequence of the coefficients c¢; of the decompo-
sition of this kernel. Since

k k+1

Ay = cpmcpy = - Py - TP g,
W = TG R G 2k k) )

£,(0)>0, §,(1)=0, and
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&(p) = (l—pz)p"‘l(ﬁ—%%l) <0, 0<p<l, k=1,2,...,

we get Ac,>0 forany ke N and 0<p < 1. Taking into account that

2
ATcp = = 2Ck41 + Cpy
1 1 2 pk pk+2 2pk+1 1_p2 pk pk+2 2pk+l
= =+ - - B + - PP =
k22 ket 1) K2 (k2P (k+1?E 2 (k k+2 k+1] w(P)

and, forany ke N,

N (0)>0,  m(1)=0,

2 2
’ — 2 (l_p)
= (1—pX)ptt{—P_ 1, 2P _ <0, 0<p<l,
() = (1-p°)p ( o et e 5 p

we conclude that Azck> 0 forall ke N and 0< p < 1. Note that the coefficients ¢, of the kernel V,(t) =

\72(p t) are positive and tend to zero twice monotonically (Ac;> 0, Azck> 0). Furthermore, it is easy to see

that they satisfy the condition Zk | k < oo, Therefore, according to [11, pp.297-298], we get \72(p,t) >0

for te (0,m) and 0<p < 1.

It is obvious that \72,(p, 0) = \721(p, n) =0 for /e N. Hence, assuming that \72,(p, t) = 0 for one more
point f, € (0, ™) and using the Rolle theorem 2/—2 times, we establish that, for the function ‘72(p, t), there
exists ty_, € (0, m) suchthat V,(p,t,_,) =0. However, as shown above, this is impossible. Thus, equality

(6) is true. Further, if we assume that V5, ,(p.y) — ‘721+1(p,g) =0, the (0, ), 15 # g, then, according to the

Rolle theorem, there exists 7, € (0, Tt) such that Vy;,,(p,#) =0, whence V5 (p,#) =0. But this is impossible
by virtue of (6). Equality (7) is proved.
Finally, using relation (8), we get

2k+1 2k+1

2\ oo
<(W". P _ 4 e 1-p 2(1-p°) _D p) 1kr1_ 9
(W, ) ,;O( D Qk+1) T x ,Z()( ) Qk+1)" T 2()( ) Qk+1)" ©)

Using relation (9) and taking into account that the functions

2k+1

4> 1-p
on(p) = Ttkz(‘)(2k+l)”+l

1 2k+1

_ k1=
v, (p) = %( )—Qk o

satisfy the equalities (see [3, p. 20])
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0u(p) = 2( 1) Loyt L ; Ly e

k 1

n—1
o) = 3 Sy, ot 5+< s,
k=1

we obtain the statement of Theorem 1.
Remark 1. Note that, by virtue of (8), we have

W' R).= K, r=23...

Remark 2. Taking into account that

=0((1-p)"), ¢ = O((l—p)rlnl_lp) (10)

as p — 1- (see [3, p. 18]), by virtue of Theorem 1 we get

%(V_Vz,Pp)C = 0((1—p)zlnﬁ) (11)
and
€(W".B,),. = (K k )(1 0)% + 0((1—p)3ln1_1p), r=3,4,.., (12)
as p — 1—-. Comparing (11) and (12) with the estimates
E(W'. 4. = K, (1-p)+ 0(<1—p>21n1fp] (13)

obtained in [9] (here, A, is the harmonic Poisson integral), we conclude that, in the case where re N \{1} and
p — 1—, the right-hand sides of (11) and (12) are smaller by an order of magnitude than the right-hand side of
(13).

In view of relation (10) and the estimate lnl ~(1-p) as p = 1—, equalities (3) for » =2/ and (4) for
P

r =21+ 1 enable one to specify only the first » — 1 terms of asymptotics with the corresponding constants
(Kolmogorov—Nikol’skii constants). The theorems presented below give asymptotic decompositions of quan-
tities (2) for N = W and N = W’ that enable one to calculate the Kolmogorov—Nikol’skii constants corre-
sponding to asymptotic terms of arbitrarily high order of smallness. In the proof of these theorems, we use the
following lemmas from [8] (for technical reasons independent of the authors, several misprints were made in
their formulation in [8]):
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Lemma 1. For the functions

~

n 15)

1+1¢
jt “In ldtl...dtn, neN,
0 L a

1
0.0 =]
p

the following asymptotic decomposition is true:

Pu(p) = Z{aka—m In +Bk<1—p>}
k=1
where
k
of = Eldf,
k!
Bk _ (k {Z(pn l(O)a +a (ln2+z )+S;?},
i ll
0, k<nm;
Sn — k k k—n )
k 2 2cl.ljn+ZAi’“1a,’§", k>n,
i=n+1 i=1
[0, i>j;
1Y G =D, i=1
ai" = a'{__ll —a{_l(]' -1, i<j <n;
a{__ll—a{_l(j—2), n+l=i<j;
|~ -n-Dadl ' =al7\G—i+n-1, n+l<i<j,

T .
=K,, nisodd,
Al = n(n—l)...(n—k+1)’ 0,(0) = 2
k Tz .
EK”’ n is even.

Lemma 2. For the functions

Iy
arctant
_[ Lat...dt,, neN,

S e—"

1
Vu(p) =

the following asymptotic decomposition is true:

v.(p) = D via-p",
k=1

1467

(14)

(15)
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where, for ke N,

ve = £ {an l<0>b"+ok} (16)
gKn, n is odd, 0, k<n,
¥,(0) = n | of = Zk‘, B o
2 Kn> n is even, et
[0, i>],
=D/ (=D, i=1,
bl = 3 b3 -b7 (G- D), i<j<n,
b/ - (j-2), n+l=i<j,
| 2(i-n-1b/] =/ (j-2i+2n), n+l<i<].

Theorem 2. The following asymptotic decompositions are true:

=2 1 2 1 In2 1
(W ,PP)C = E(l—p) lnl_p (K1+7—2—)(1— 0)>

e 25 [ odei-Joboa - Lo et - Do Jo- o)

W’ = 1z 2 r r— 1 1
“W'B). = (K,_l +5Kr_2)(1—p)2 + = Y {[ock +o) —Eock_lz](l—p)k lnl_p
+ [Bhﬁ;’;{—% ,’;12](1—p)k}, r=21+2, leN,

wrr ~ l o 2 ﬂ - r r—1 _1 _ _
%(W,Pp)c = (K,_1+2K,_2)(1 P) +n1;[yk+yk_l oY ](1 Pk, r=21+1, leN,

where the coefficients oy, By, and 7, are calculated according to formulas (14), (15), and (16), respec-
tively.

The validity of Theorem 2 follows from equality (9), Lemmas 1 and 2, and the relations

Iy

) oo 2k+1

1 1+t 1-
J. ldtl dtn =2 E p—rH-l (17)
Oll...t 1— =0 2k+1)

n

and
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til

1
J- J- rctantl p2k
po

dn ... 2( D

18
.. n k=0 (2]{ + 1)n+l ( )

o'—.S‘

Theorem 3. The following asymptotic decompositions are true:

oo

= 1 2, 2 r —1 1 1 k 1
oW pe = (Rras L Yacpie 23 (o o - Lan ] prin -
( o)c 1+ 2 |d=p) nz’{ kT O 2k2( p) nl—p

k=3

+[B£+B£:%—% 2:5](1—;3)"}, r=2i+1, leN,  (19)

~ 1 4 r 1 r
E(W, Py = (Kr—1+5Kr—2)(1_p)2+ E};[Yk +Vici - X ](I_P) r=2l, leN, (20)

where the coefficients oy, By, and ) are calculated according to formulas (14), (15), and (16), respec-
tively.

Proof. As in the proof of Theorem 1, it is easy to show that

E(W',P))c = 1 sup
T rew”

[ rO0 v, 0ar|,

-n

where

k 25 | Lk
oo 1—[1+7(1—p ):lp
V.(p,t) = z 2 - cos(kt+ﬂ),
k=1 k 2

and, furthermore,
signV,.(p,t) = £signsint for r=21+1,

sign(Vr(p,t)—Vr(p,g)) = tsigncost for r=21.

Therefore, for r>2, we get

E(W,P)-= =Y (=)t
(W', Py)c n%( ) )

k+1
_ 2( )k(r+1)(;k+1)’+1 2(1- p %) Z( prosn 1

(2k +1)"

- 1 k+1
p ) 2( P 1=p7

21
(2k +1)" @b
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Taking into account relations (17) and (18) and Lemmas 1 and 2, we obtain the asymptotic decompositions (19)
and (20) from (21). Theorem 3 is proved.

Note that asymptotic decompositions of the upper bounds of approximations on the class of differentiable
functions W' by their harmonic Poisson integrals were obtained in [6], and on the classes W', r e N\{1},

and W', re N, in[8]. An asymptotic decomposition of € (Wl, Pp)C was obtained in [7].
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